浏览全部资源
扫码关注微信
西北核技术研究所西安710024
LIU Li, male, born in 1992, graduated from University of Science and Technology of China with a doctoral degree in 2018, focusing on particle transport simulation and nuclear explosion effects, E-mail: liuli@nint.ac.cn
Published Online:19 November 2024,
Received:10 May 2024,
Revised:10 July 2024,
移动端阅览
LIU Li, NIU Shengli, ZUO Yinghong, et al. Monte Carlo simulation of delayed γ-rays ionizing the atmosphere based on debris motion model. [J/OL]. NUCLEAR TECHNIQUES, 2024,XXXXXX
LIU Li, NIU Shengli, ZUO Yinghong, et al. Monte Carlo simulation of delayed γ-rays ionizing the atmosphere based on debris motion model. [J/OL]. NUCLEAR TECHNIQUES, 2024,XXXXXX DOI: CSTR: 32193.14.hjs.CN31-1342/TL.2024.47.110501.
高空核爆炸碎片云释放出的缓发γ射线在高空非均匀大气的输运过程中电离大气,使得电离层中电子数密度剧增,进而影响途经电离层的无线电通信链路。为了准确描述随时空演化的缓发γ射线源电离大气过程,首先建立高空核爆炸碎片云运动演化的流体力学模型,然后根据碎片云参数建立缓发γ射线分层等效体源模型,最后采用蒙特卡罗方法模拟缓发γ射线在高空大气中输运并电离大气的过程。针对碎片云形状时空演化特性,采用辐射源分层抽样的方法得到缓发γ射线初始位置;针对大气密度随高度指数衰减的特性,采用质量厚度抽样方法简化模型、提升效率。结果表明:碎片云形状对缓发γ射线电离大气的范围和强度存在明显影响。兆吨级高空核爆炸缓发γ射线电离大气范围可达千公里以上。当爆高不变而当量增加时,碎片云高度和水平半径增大,缓发γ射线电离大气范围和强度增大。保持当量不变而增加爆高时,碎片云高度和水平半径增大,缓发γ射线电离大气范围增大,但强度有所降低。
Background
2
In the aftermath of a high-altitude nuclear explosion
the delayed γ-rays emanating from the debris undergo a complex ionization process while traversing the non-uniform high-altitude atmosphere. This process results in a significant augmentation of the electron number density in the ionosphere
thereby affecting radio communication links traversing the ionosphere.
Purpose
2
This study aims to develop a comprehensive modeling and simulation framework that accurately captures the temporal and spatial evolution of delayed γ-ray sources and their corresponding atmospheric ionization effects.
Methods
2
Firstly
a hydrodynamic model was established to simulate the debris motion resulting from a high-altitude nuclear explosion. Subsequently
a hierarchical equivalent model of delayed γ-ray sources was formulated based on the debris parameters. Then
the Monte Carlo method was utilized to simulate the ionization effect of these delayed γ-rays in the non-uniform high-altitude atmosphere. Finally
given the dynamic evolution of the debris shape
a stratified sampling approach was employed to determine the initial positions of the delayed γ-rays. Various conditions such as 4 Mt equivalent explosion at a height of 40 km
4 Mt equivalent at a height of 80 km
100 kt equivalent at a height of 40 km
and 100 kt equivalent at a height of 80 km
the fragment cloud was evenly divided into 10 layers according to their respective proportions. MCATNP code was used to calculate the distribution of electron production rates formed by the ionization of the atmosphere by delayed γ-rays generated by the debris different times after the explosion
Furthermore
considering the exponential decay of atmospheric density with height
the mass thickness sampling method was adopted to simplify the computational model.
Results & Conclusions
2
The results indicate that the ionization intensity and range of delayed γ-rays are significantly influenced by the debris shape. In the case of a megaton-level high-altitude nuclear explosion
the ionization range of delayed γ-rays can extend to over a thousand kilometers. Specifically
with a constant explosion height
an increase in the equivalent yield leads to an augmentation in the debris height and horizontal radius
thereby enhancing the ionization range and intensity. Conversely
when the burst height is increased while maintaining a constant equivalent yield
the debris height and horizontal radius increase
leading to an expansion in the ionization range but a reduction in ionization intensity.
高空核爆炸碎片云缓发γ射线大气电离蒙特卡罗模拟
High-altitude nuclear explosionDebrisDelayed γ-raysIonization of the atmosphereMonte Carlo simulation
王建国. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010.
WANG Jianguo. Manual of parameters of high altitude nuclear explosion effect[M]. Beijing: Atomic Press, 2010.
欧阳建明, 马燕云, 邵福球, 等. 高空核爆炸X射线电离的时空分布数值模拟[J]. 物理学报, 2012, 61(24): 242801. DOI: 10.7498/aps.61.242801http://dx.doi.org/10.7498/aps.61.242801.
OUYANG Jianming, MA Yanyun, SHAO Fuqiu, et al. Numerical simulation of temporal and spatial distribution of X-ray ionization with high-altitude nuclear explosion[J]. Acta Physica Sinica, 2012, 61(24): 242801. DOI: 10.7498/aps.61.242801http://dx.doi.org/10.7498/aps.61.242801.
陶应龙, 王建国, 牛胜利, 等. 高空核爆炸瞬发辐射电离效应的数值模拟[J]. 物理学报, 2010, 59(8): 5914–5920. 10.7498/aps.59.5914http://dx.doi.org/10.7498/aps.59.5914
TAO Yinglong, WANG Jianguo, NIU Shengli, et al. Numerical simulation of the ionization effects of prompt radiation from high-altitude nuclear explosions[J]. Acta Physica Sinica, 2010, 59(8): 5914–5920. 10.7498/aps.59.5914http://dx.doi.org/10.7498/aps.59.5914
Xu H, Ouyang J M, Wang S W, et al. Impact of atmospheric ionization by delayed radiation from high-altitude nuclear explosions on radio communication[J]. Nuclear Science and Techniques, 2019, 30(12): 179. DOI: 10.1007/s41365-019-0703-2http://dx.doi.org/10.1007/s41365-019-0703-2.
赵正予, 王翔. 空中核爆炸电离效应的数值模拟[J]. 物理学报, 2007, 56(7): 4297–4304. DOI: 10.3321/j.issn: 1000-3290.2007.07.109http://dx.doi.org/10.3321/j.issn:1000-3290.2007.07.109.
ZHAO Zhengyu, WANG Xiang. Numerical simulation of the ionization effects of low- and high-altitude nuclear explosions[J]. Acta Physica Sinica, 2007, 56(7): 4297–4304. DOI: 10.3321/j.issn:1000-3290.2007.07.109http://dx.doi.org/10.3321/j.issn:1000-3290.2007.07.109.
刘利, 牛胜利, 朱金辉, 等. 临近空间核爆炸碎片云运动数值模拟[J]. 计算物理, 2022, 39(5): 521–528. DOI: 10.19596/j.cnki.1001-246x.8492http://dx.doi.org/10.19596/j.cnki.1001-246x.8492.
LIU Li, NIU Shengli, ZHU Jinhui, et al. Numerical simulation of debris motion from a near-space nuclear detonation[J]. Chinese Journal of Computational Physics, 2022, 39(5): 521–528. DOI: 10.19596/j.cnki.1001-246x.8492http://dx.doi.org/10.19596/j.cnki.1001-246x.8492.
刘利, 牛胜利, 朱金辉, 等. 临近空间核爆炸碎片云运动特征与规律研究[J]. 核技术, 2022, 45(10): 100503. DOI: 10.11889/j.0253-3219.2022.hjs.45.100503http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.100503.
LIU Li, NIU Shengli, ZHU Jinhui, et al. Motion characteristics and laws of the debris from a near-space nuclear detonation[J]. Nuclear Techniques, 2022, 45(10): 100503. DOI: 10.11889/j.0253-3219.2022.hjs.45.100503http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.100503.
杨斌, 牛胜利, 罗旭东, 等. 高空核爆炸碎片云运动数值模拟[J]. 核技术, 2012, 35(2): 156–160.
YANG Bin, NIU Shengli, LUO Xudong, et al. The simulation of high-altitude nuclear explosion debris movement[J]. Nuclear Techniques, 2012, 35(2): 156–160.
Sergeev I Y. Analytical model of explosions in a rarefied atmosphere[J]. Geomagnetism and Aeronomy, 2012, 52(6): 805–810. DOI: 10.1134/S0016793212060096http://dx.doi.org/10.1134/S0016793212060096.
Symbalisty E M D, Zinn J, Whitaker R W. RADFLO physics and algorithms[R]. Los Alamos National Laboratory, LA-12988-MS, 1995. DOI: 10.2172/110714http://dx.doi.org/10.2172/110714.
Steiger W R, Matsushita S. Photographs of the high-altitude nuclear explosion 'Teak'[J]. Journal of Geophysical Research, 1960, 65(2): 545–550. DOI: 10.1029/jz065i002p00545http://dx.doi.org/10.1029/jz065i002p00545.
许淑艳, 刘保杰, LI Qin. 核技术应用研究中的蒙特卡罗计算问题[J]. 核技术, 2007, 30(7): 597–600. 10.3321/j.issn:0253-3219.2007.07.011http://dx.doi.org/10.3321/j.issn:0253-3219.2007.07.011
XU Shuyan, LIU Baojie, LI Qin. Monte Carlo computation in the applied research of nuclear technology[J]. Nuclear Techniques, 2007, 30(7): 597–600. 10.3321/j.issn:0253-3219.2007.07.011http://dx.doi.org/10.3321/j.issn:0253-3219.2007.07.011
Zuo Y H, Zhu J H, Shang P. Monte Carlo simulation of reflection effects of multi-element materials on gamma rays[J]. Nuclear Science and Techniques, 2021, 32(1): 10. DOI: 10.1007/s41365-020-00837-zhttp://dx.doi.org/10.1007/s41365-020-00837-z.
刘利, 左应红, 牛胜利, 等. 中子及次级γ在高空长距离蒙卡输运模拟中的减方差方法[J]. 现代应用物理, 2022, 13(1): 010202. DOI: 10.12061/j.issn.2095-6223.2022.010202http://dx.doi.org/10.12061/j.issn.2095-6223.2022.010202.
LIU Li, ZUO Yinghong, NIU Shengli, et al. Variance reduction methods for the Monte Carlo simulation of long-distance neutron and secondaryγtransport in the upper atmosphere[J]. Modern Applied Physics, 2022, 13(1): 010202. DOI: 10.12061/j.issn.2095-6223.2022.010202http://dx.doi.org/10.12061/j.issn.2095-6223.2022.010202.
陶应龙, 朱金辉, 王建国, 等. 非均匀大气中γ射线输运的蒙特卡罗模拟方法[J]. 计算物理, 2010, 27(5): 740–744. DOI: 10.3969/j.issn.1001-246X.2010.05.016http://dx.doi.org/10.3969/j.issn.1001-246X.2010.05.016.
TAO Yinglong, ZHU Jinhui, WANG Jianguo, et al. Monte Carlo simulation of gamma ray transport in non-uniform atmosphere[J]. Chinese Journal of Computational Physics, 2010, 27(5): 740–744. DOI: 10.3969/j.issn.1001-246X.2010.05.016http://dx.doi.org/10.3969/j.issn.1001-246X.2010.05.016.
陶应龙, 王建国, 牛胜利, 等. MCATNP蒙特卡罗粒子输运程序的MPI并行化[J]. 核电子学与探测技术, 2011, 31(5): 490–494. DOI: 10.3969/j.issn.0258-0934.2011.05.002http://dx.doi.org/10.3969/j.issn.0258-0934.2011.05.002.
TAO Yinglong, WANG Jianguo, NIU Shengli, et al. Parallelization of MCATNP Monte Carlo particle transport code by using MPI[J]. Nuclear Electronics & Detection Technology, 2011, 31(5): 490–494. DOI: 10.3969/j.issn.0258-0934.2011.05.002http://dx.doi.org/10.3969/j.issn.0258-0934.2011.05.002.
Ali Hosseini S, Athari Allaf M. Implementation and benchmarking of ENDFVII based library for PBM reactor analysis with MCNP4c[J]. Progress in Nuclear Energy, 2012, 60: 27–30. DOI: 10.1016/j.pnucene.2012.05.001http://dx.doi.org/10.1016/j.pnucene.2012.05.001.
Berkowitz J D, Scheibe M, Holland H D. Physics of high-altitude nuclear burst effects: Chapter 5 atmosphere deionization, ADA068541[R]. California: Mission Research Corporation, 1974.
0
Views
6
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution