浏览全部资源
扫码关注微信
1.中国科学院上海应用物理研究所上海201800
2.中国科学院上海高等研究院上海201210
3.中国科学院大学北京100049
WANG Zhenwei, male, born in 1999, graduated from University of South China in 2021, master student, focusing on nuclear technology and applications
XU Hanghua, E-mail: xuhh@sari.ac.cn
WANG Hongwei, E-mail: wanghw@sari.ac.cn
Published:15 November 2024,
Published Online:19 November 2024,
Received:23 March 2024,
Revised:13 July 2024,
移动端阅览
王振伟,许杭华,郝子锐等.基于激光康普顿散射的电子束参数测量方法[J].核技术,2024,47(11):1-9.
WANG Zhenwei,XU Hanghua,HAO Zirui,et al.The method of measuring electron beam parameters based on laser Compton scattering[J].NUCLEAR TECHNIQUES,2024,47(11):1-9.
王振伟,许杭华,郝子锐等.基于激光康普顿散射的电子束参数测量方法[J].核技术,2024,47(11):1-9. DOI: CSTR: 32193.14.hjs.CN31-1342/TL.2024.47.110201.
WANG Zhenwei,XU Hanghua,HAO Zirui,et al.The method of measuring electron beam parameters based on laser Compton scattering[J].NUCLEAR TECHNIQUES,2024,47(11):1-9. DOI: CSTR: 32193.14.hjs.CN31-1342/TL.2024.47.110201.
加速器电子束参数的无损间接测量是一个难题,储存环上传统的X射线针孔成像(X-ray Pinhole Imaging)方法和直线加速器上的狭缝衍射法(Optical Diffraction Radiation,ODR)都存在不足之处。激光康普顿散射(Laser Compton Scattering,LCS)装置是利用相对论电子与低能光子相互碰撞产生高能γ束的新光源。本文提出了一种基于激光康普顿散射光源测量能谱提取电子束参数的方法,该研究旨在通过自主开发的基于Geant4的蒙特卡罗程序模拟重建出与实验测量能谱符合一致的模拟谱,从而获得电子束参数,包括水平方向束斑尺寸、电子能量和发射度。在对上海同步辐射装置(Shanghai Synchrotron Radiation Facility,SSRF)的激光γ光束线站(Shanghai Laser Electron Gamma Source,SLEGS)上的多碰撞角度γ测量能谱做了一致性的验证,结果表明:提取的上海光源储存环电子束参数与理论值符合得较好。这证明了激光康普顿散射是一个有效的电子束参数无损间接测量方法,为后续其他电子束的提取奠定基础。
Background
2
The non-destructive indirect measurement of accelerator electron beam parameters is a challenging task. Both the traditional X-ray pinhole imaging methods on storage rings and optical diffraction radiation (ODR) from a slit techniques on linear accelerators have their shortcomings. The laser Compton scattering (LCS) device is a new light source that uses relativistic electrons and low-energy photons to collide with each other to produce high-energy γ beams.
Purpose
2
This study aims to extract the SSRF (Shanghai Synchrotron Radiation Facility) electron beam parameters based on the laser Compton scattering (LCS) techniques.
Method
2
Under the condition of controllable laser parameters
the electron beam parameters of LCS could be determined by the γ beam measurement. Firstly
simulation spectra reconstructed by self-developed Monte Carlo program based on Geant4 were selected by those best matched with the experimentally measured energy spectra. Then
the corresponding parameters of electron beam
including beam spot size in horizontal direction
electron energy and emittance
were extracted. Finally
the consistency of the gamma energy spectra at different colliding angles measured on the Shanghai Laser Electron Gamma Source (SLEGS) beamline station of SSRF was verified.
Results
2
The extracted electron beam parameters of the SSRF storing ring are in good agreement with the theoretical values. The electron beam energy at SSRF storage ring BL03SSID interaction point is (3 511.44±0.11) MeV
the transverse (horizontal) dimension of the electron beam is (316.60±0.15) μm
and the emittance of the electron beam is (4.56±0.01) nm·rad
with relative deviations of 0.33%
1.6%
8.1%
respectively.
Conclusion
2
Results of this study demonstrate that LCS is an effective and non-destructive way to determine the electron beam parameters indirectly and lays a stable foundation for the extraction of other parameters of the electron beam.
激光康普顿散射电子束参数蒙特卡罗模拟γ能谱
Laser Compton scatteringElectron beam parameterMonte Carlo simulationGamma spectrum
Leng Y B, Huang G Q, Zhang M Z, et al. The beam-based calibration of an X-ray pinhole camera at SSRF[J]. Chinese Physics C, 2012, 36(1): 80–83. DOI: 10.1088/1674-1137/36/1/014http://dx.doi.org/10.1088/1674-1137/36/1/014.
陈杰, 叶恺容, 冷用斌. 上海光源同步辐射空间干涉仪研制[J]. 强激光与粒子束, 2011, 23(1): 179–184. DOI: 10.3788/HPLPB20112301.0179http://dx.doi.org/10.3788/HPLPB20112301.0179.
CHEN Jie, YE Kairong, LENG Yongbin. Development of Shanghai Synchrotron Radiation Facility synchrotron radiation interferometer[J]. High Power Laser and Particle Beams, 2011, 23(1): 179–184. DOI: 10.3788/HPLPB20112301.0179http://dx.doi.org/10.3788/HPLPB20112301.0179.
Lumpkin A H, Yang B X, Berg W J, et al. Optical techniques for electron-beam characterizations on the aps sase fel project[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1–3): 336–340. DOI: 10.1016/s0168-9002(99)00075-3http://dx.doi.org/10.1016/s0168-9002(99)00075-3.
Potylitsyn A, Sukhikh L, Gusvitskii T, et al. Image of the transverse bunch profile via coherent optical transition radiation[J]. Physical Review Accelerators and Beams, 2020, 23(4): 042804. DOI: 10.1103/physrevaccelbeams. 23.042804http://dx.doi.org/10.1103/physrevaccelbeams.23.042804.
Fulton R, Haggerty J, Jared R, et al. A high resolution wire scanner for micron-size profile measurements at the SLC[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 274(1–2): 37–44. DOI: 10.1016/0168-9002(89)90362-8http://dx.doi.org/10.1016/0168-9002(89)90362-8.
Sirvent J L, Dehning B, Emery J, et al. Secondary particle acquisition system for the CERN beam wire scanners upgrade[J]. Journal of Instrumentation, 2015, 10(4): C04021. DOI: 10.1088/1748-0221/10/04/c04021http://dx.doi.org/10.1088/1748-0221/10/04/c04021.
Askarbioki M, Zarandi M B, Khakshournia S, et al. Electron beams scanning: a novel method[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 894: 81–86. DOI: 10.1016/j.nima. 2018.03.062http://dx.doi.org/10.1016/j.nima.2018.03.062.
Castellano M. A new non-intercepting beam size diagnostics using diffraction radiation from a slit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 394(3): 275–280. DOI: 10.1016/s0168-9002(97)00570-6http://dx.doi.org/10.1016/s0168-9002(97)00570-6.
Wilson E, Holzer B J. Particle physics reference library[M]. Germany: Springer International Publishing, 2020. 10.1007/978-3-030-34245-6_2http://dx.doi.org/10.1007/978-3-030-34245-6_2
Arnaudon L, Knudsen L, Koutchouk J P, et al. Measurement of LEP beam energy by resonant spin depolarization[J]. Physics Letters B, 1992, 284(3–4): 431–439. DOI: 10.1016/0370-2693(92)90457-fhttp://dx.doi.org/10.1016/0370-2693(92)90457-f.
Sun C, Li J, Rusev G, et al. Energy and energy spread measurements of an electron beam by Compton scattering method[J]. Physical Review Special Topics - Accelerators and Beams, 2009, 12(6): 062801. DOI: 10.1103/physrevstab.12.062801http://dx.doi.org/10.1103/physrevstab.12.062801.
Klein R, Mayer T, Kuske P, et al. Beam diagnostics at the BESSY I electron storage ring with Compton backscattered laser photons: measurement of the electron energy and related quantities[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 384(2–3): 293–298. DOI: 10.1016/s0168-9002(96)00899-6http://dx.doi.org/10.1016/s0168-9002(96)00899-6.
Renner F, Schwab A, Kapsch R P, et al. An approach to an accurate determination of the energy spectrum of high-energy electron beams using magnetic spectrometry[J]. Journal of Instrumentation, 2014, 9(3): P03004. DOI: 10.1088/1748-0221/9/03/p03004http://dx.doi.org/10.1088/1748-0221/9/03/p03004.
葛愉成. 激光-电子康普顿散射物理特性研究[J]. 物理学报, 2009, 58(5): 3094–3103. DOI: 10.3321/j.issn:1000-3290.2009.05.035http://dx.doi.org/10.3321/j.issn:1000-3290.2009.05.035.
GE Yucheng. Physical properties of laser-electron Compton scattering[J]. Acta Physica Sinica, 2009, 58(5): 3094–3103. DOI: 10.3321/j.issn:1000-3290.2009.05.035http://dx.doi.org/10.3321/j.issn:1000-3290.2009.05.035.
Chouffani K, Harmon F, Wells D, et al. Determination of electron beam parameters by means of laser-Compton scattering[J]. Physical Review Special Topics - Accelerators and Beams, 2006, 9(5): 050701. DOI: 10.1103/physrevstab.9.050701http://dx.doi.org/10.1103/physrevstab.9.050701.
Utsunomiya H, Shima T, Takahisa K, et al. Energy calibration of the NewSUBARU storage ring for laser compton-scattering gamma rays and applications[J]. IEEE Transactions on Nuclear Science, 2014, 61(3): 1252–1258. DOI: 10.1109/TNS.2014.2312323http://dx.doi.org/10.1109/TNS.2014.2312323.
Drebot I, Petrillo V, Serafini L, et al. Non-destructive definition of emittance using the Compton back-scattering and AI Machine Learning[C]. The 14th International Particle Accelerator Conference (IPAC’23), Venice, Italy, 2023.
Wang H W, Fan G T, Liu L X, et al. Commissioning of laser electron gamma beamline SLEGS at SSRF[J]. Nuclear Science and Techniques, 2022, 33(7): 87. DOI: 10.1007/s41365-022-01076-0http://dx.doi.org/10.1007/s41365-022-01076-0.
Hao Z R, Fan G T, Wang H W, et al. Collimator system of SLEGS beamline at Shanghai Light Source[J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2021, 1013: 165638. DOI: 10.1016/J.NIMA. 2021.165638http://dx.doi.org/10.1016/J.NIMA.2021.165638.
Chen K J, Liu L X, Hao Z R, et al. Simulation and test of the SLEGS TOF spectrometer at SSRF[J]. Nuclear Science and Techniques, 2023, 34(3): 47. DOI: 10.1007/s41365-023-01194-3http://dx.doi.org/10.1007/s41365-023-01194-3.
Xu H H, Fan G T, Wang H W, et al. Interaction chamber for laser Compton slant-scattering in SLEGS beamline at Shanghai Light Source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1033: 166742. DOI: 10.1016/j.nima.2022.166742http://dx.doi.org/10.1016/j.nima.2022.166742.
罗文. 激光康普顿X/γ源的实验研究及蒙特卡罗模拟[D]. 北京: 中国科学院研究生院, 2010.
LUO Wen. Experimental study and Monte Carlo simulation of laser Compton X/γ source[D].Beijing: Graduate University of Chinese Academy of Sciences, 2010.
Luo W, Xu W, Pan Q Y, et al. A 4D Monte Carlo laser-Compton scattering simulation code for the characterization of the future energy-tunable SLEGS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 660(1): 108–115. DOI: 10.1016/j.nima.2011.09.035http://dx.doi.org/10.1016/j.nima.2011.09.035.
郝子锐. 上海激光电子γ源束流性能与光中子实验方法学研究[D]. 上海: 中国科学院上海应用物理研究所, 2023.
HAO Zirui. Study on beam performance and photoneutron experimental methodology of Shanghai Laser Electron Gamma Source[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2023.
Chao A W, Tigner M, Weise H, et al. Handbook of accelerator physics and engineering[M]. 3rd ed. Singapore: World Scientific Pub, 2023. 10.1142/13229http://dx.doi.org/10.1142/13229
Du C C, Wang J Q, Ji D H, et al. Studies of round beam at HEPS storage ring by driving linear difference coupling resonance[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 976: 164264. DOI: 10.1016/j.nima.2020.164264http://dx.doi.org/10.1016/j.nima.2020.164264.
Yu Q L, Gu D, Zhang M, et al. Transverse phase space reconstruction study in Shanghai soft X-ray FEL facility[J]. Nuclear Science and Techniques, 2017, 29(1): 9. DOI: 10.1007/s41365-017-0338-0http://dx.doi.org/10.1007/s41365-017-0338-0.
李昌亮. 上海光源储存环垂直发射度的研究[D]. 上海: 中国科学院上海应用物理研究所, 2016.
LI Changliang. Study on vertical emittance of Shanghai light source storage ring[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2016.
Liu L X, Wang H W, Fan G T, et al. The SLEGS beamline of SSRF[J]. Nuclear Science and Techniques, 2024, 35(7): 111. DOI: 10.1007/s41365-024-01469-3http://dx.doi.org/10.1007/s41365-024-01469-3.
郝子锐, 范功涛, 刘龙祥, 等. 4π平坦效率3He中子探测器阵列的设计与模拟分析[J]. 核技术, 2020, 43(11): 110501. DOI: 10.11889/j.0253-3219.2020.hjs.43.110501http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.110501.
HAO Zirui, FAN Gongtao, LIU Longxiang, et al. Design and simulation of 4π flat-efficiency 3He neutron detector array[J]. Nuclear Techniques, 2020, 43(11): 110501. DOI: 10.11889/j.0253-3219.2020.hjs.43.110501http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.110501.
王宏伟, 范功涛, 刘龙祥, 等. 上海激光康普顿散射γ源的发展和展望[J]. 原子核物理评论, 2020, 37(1): 53–63. DOI: 10.11804/NuclPhysRev.37.2019043http://dx.doi.org/10.11804/NuclPhysRev.37.2019043.
WANG Hongwei, FAN Gongtao, LIU Longxiang, et al. Development and prospect of Shanghai laser Compton scattering gamma source[J]. Nuclear Physics Review, 2020, 37(1): 53–63. DOI: 10.11804/NuclPhysRev.37.2019043http://dx.doi.org/10.11804/NuclPhysRev.37.2019043.
MiniPIX, TPX standard-advacam[EB/OL]. [2023-12-01]. https://advacam.com/camera/minipix-tpx-standarhttps://advacam.com/camera/minipix-tpx-standar.
王俊文, 范功涛, 王宏伟, 等. 基于SXFEL的新型LCS光源极化γ束流性质研究[J]. 核技术, 2019, 42(12): 120201. DOI: 10.11889/j.0253-3219.2019.hjs.42.120201http://dx.doi.org/10.11889/j.0253-3219.2019.hjs.42.120201.
WANG Junwen, FAN Gongtao, WANG Hongwei, et al. Study on polarized γ beam properties of a new LCS light source based on SXFEL[J]. Nuclear Techniques, 2019, 42(12): 120201. DOI: 10.11889/j.0253-3219.2019.hjs.42.120201http://dx.doi.org/10.11889/j.0253-3219.2019.hjs.42.120201.
焦广为, 田顺强, 相升旺, 等. 同步辐射光源新增线站相关加速器安装与调试[J]. 核技术, 2024, 47(3): 030101. DOI: 10.11889/j.0253-3219.2024.hjs.47.030101http://dx.doi.org/10.11889/j.0253-3219.2024.hjs.47.030101.
JIAO Guangwei, TIAN Shunqiang, XIANG Shengwang, et al. Installation and commissioning of accelerators associated with the new beamline in synchrotron radiation light source[J]. Nuclear Techniques, 2024, 47(3): 030101. DOI: 10.11889/j.0253-3219.2024.hjs.47.030101http://dx.doi.org/10.11889/j.0253-3219.2024.hjs.47.030101.
杨星, 冷用斌, 周逸媚. 逐束团三维信息提取软件HOTCAP的实时性能优化[J]. 核技术, 2024, 47(2): 020102. DOI: 10.11889/j.0253-3219.2024.hjs.47.020102http://dx.doi.org/10.11889/j.0253-3219.2024.hjs.47.020102.
YANG Xing, LENG Yongbin, ZHOU Yimei. Real-time optimization of bunch-by-bunch 3D information extraction software HOTCAP[J]. Nuclear Techniques, 2024, 47(2): 020102. DOI: 10.11889/j.0253-3219.2024.hjs.47.020102http://dx.doi.org/10.11889/j.0253-3219.2024.hjs.47.020102.
0
Views
3
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution