浏览全部资源
扫码关注微信
1.武汉大学 测绘学院武汉430072
2.武汉大学 先进光源研究中心武汉430072
3.武汉大学 高等研究院武汉430072
WANG Hongjuan, female, born in 1987, graduated from University of Chinese Academy of Sciences with a master's degree in 2013, doctoral student, focusing on precision engineering measurement and data analysis
TANG Lin, E-mail: lintang@whu.edu.cn
ZOU Jingui, E-mail: jgzou@sgg.whu.edu.cn
Published:15 November 2024,
Published Online:19 November 2024,
Received:23 February 2024,
移动端阅览
王红娟,唐琳,邹进贵.基于谱估计的微振动测试与评估方法及其应用[J].核技术,2024,47(11):1-7.
WANG Hongjuan,TANG Lin,ZOU Jingui.Ground-vibration testing and evaluation method based on spectral estimation and its application[J].NUCLEAR TECHNIQUES,2024,47(11):1-7.
王红娟,唐琳,邹进贵.基于谱估计的微振动测试与评估方法及其应用[J].核技术,2024,47(11):1-7. DOI: CSTR: 32193.14.hjs.CN31-1342/TL.2024.47.110101.
WANG Hongjuan,TANG Lin,ZOU Jingui.Ground-vibration testing and evaluation method based on spectral estimation and its application[J].NUCLEAR TECHNIQUES,2024,47(11):1-7. DOI: CSTR: 32193.14.hjs.CN31-1342/TL.2024.47.110101.
随着第四代同步辐射光源对束流亮度和发射度的要求日益严苛,微振动对束流品质的影响逐渐凸显。然而,国际上尚无统一的标准来全面测试和评估地基微振动的影响,对微振动的有效管理和控制变得尤为困难。本文建立基于谱估计的振动数据处理模型,并提出基于概率统计的方法来评估地基微振动位移,全面客观地评价振动位移有效值。利用该模型对武汉先进光源预研基地的实验大厅进行振动对比测试、振源分析及振动位移评估,得出垂直方向的振动位移有效值的平均值(Average Root Mean Square,Ave RMS)为8.08 nm,标准偏差
σ
为4.55 nm,即垂直振动位移(Ave RMS+3
σ
)为21.73 nm,满足40 nm的设计要求。该振动数据处理方法不仅适用于初始地块与基础隔振处理后地基的振动评估,还适用于元部件级别的振源排查分析。
Background
2
With the increasingly strict requirements of the fourth-generation synchrotron radiation light source on the brightness and emittance of the beam
the impact of micro-vibration on the beam quality has gradually become prominent. However
there is still no unified standard for comprehensive testing and evaluating the impact of ground-based micro-vibrations
making the effective management and control of micro-vibration particularly difficult.
Purpose
2
This study aims to evaluate the random characteristics of ground vibration and analyze the vibration sources in detail.
Methods
2
A spectral estimation-based model was developed for vibration data processing
and a method based on probability statistics was proposed to evaluate the displacement of ground micro-vibration. Then
triaxial force feedback velocity sensor (seismometer) was employed to test the micro vibration of foundation of Wuhan Advanced Light Source (WALS) pre-research site
and the vibration root mean square (RMS) displacement was comprehensively and objectively assessed by aforementioned approach.
Results
2
The results indicate that the vertical vibration average RMS displacement of the isolated foundation in the experimental hall of WALS within the pre-research zone of WALS is 8.08 nm
with a
σ
value of 4.55 nm. It is noted that the vertical vibration displacement (ave RMS+3
σ
) reaches about 21.73 nm
which satisfies the 40 nm requirement.
Conclusions
2
This vibration data processing method proposed in this study is appropriate for evaluating the vibrations of the original background and isolated treatment foundation
as well as for analysis of vibration sources at the component level.
地基微振动随机振动位移功率谱密度振动位移有效值同步辐射光源
Ground vibrationRandom vibration signalDisplacement PSDRoot mean square (RMS) displacementSynchrotron radiation
Simos N. Synchrotron facilities: vibration and stability challenge[J]. Synchrotron Radiation News, 2019, 32(5): 2–3. DOI: 10.1080/08940886.2019.1654825http://dx.doi.org/10.1080/08940886.2019.1654825.
Sery A, Napoly O. Influence of ground motion on the time evolution of beams in linear colliders[J]. Physical Review E, 1996, 53(5): 5323–5337. DOI: 10.1103/physreve.53.5323http://dx.doi.org/10.1103/physreve.53.5323.
Simos N, Amick H, Soueid A, et al. NSLS-II ground vibration stability studies and design implementation[J]. Synchrotron Radiation News, 2019, 32(5): 4–12. DOI: 10.1080/08940886.2019.1654826http://dx.doi.org/10.1080/08940886.2019.1654826.
Persson P, Persson K, Sandberg G. Numerical study on reducing building vibrations by foundation improvement[J]. Engineering Structures, 2016, 124: 361–375. DOI: 10.1016/j.engstruct.2016.06.020http://dx.doi.org/10.1016/j.engstruct.2016.06.020.
王敏超, 李欣, 翁秀峰, 等. 谱估计方法在大型实验装置地基振动测量中的应用[J]. 核技术, 2016, 39(3): 030503. DOI: 10.11889/j.0253-3219.2016.hjs.39.030503http://dx.doi.org/10.11889/j.0253-3219.2016.hjs.39.030503.
WANG Minchao, LI Xin, WENG Xiufeng, et al. Application of ground vibration measurement in large experimental facilities based on spectrum estimation methods[J]. Nuclear Techniques, 2016, 39(3): 030503. DOI: 10.11889/j.0253-3219.2016.hjs.39.030503http://dx.doi.org/10.11889/j.0253-3219.2016.hjs.39.030503.
冯忠俊, 王晓, 杜涵文, 等. 上海自由电子激光工程地基振动测试研究[J]. 核技术, 2008, 31(4): 245–249. 10.3321/j.issn:0253-3219.2008.04.002http://dx.doi.org/10.3321/j.issn:0253-3219.2008.04.002
FENG Zhongjun, WANG Xiao, DU Hanwen, et al. Ground vibration measurement on Shanghai free electron laser project[J]. Nuclear Techniques, 2008, 31(4): 245–249. 10.3321/j.issn:0253-3219.2008.04.002http://dx.doi.org/10.3321/j.issn:0253-3219.2008.04.002
Ścisło Ł, Łacny Ł, Guinchard M. COVID-19 lockdown impact on CERN seismic station ambient noise levels[J]. Open Engineering, 2021, 11(1): 1233–1240. DOI: 10.1515/eng-2021-0124http://dx.doi.org/10.1515/eng-2021-0124.
Gordon C G. Generic criteria for vibration-sensitive equipment[C]. SPIE Proceedings, Vibration Control in Microelectronics, Optics, and Metrology, San Jose, CA. SPIE, 1992. DOI: 10.1117/12.56826http://dx.doi.org/10.1117/12.56826.
Amick H, Gendreau M, Busch T, et al. Evolving criteria for research facilities: I – Vibration[C]. SPIE Conference 5933, San Diego, CA, United States, 2005. DOI: 10.1117/12.617970http://dx.doi.org/10.1117/12.617970.
刘建波, 李洪, 陈楠, 等. 地基振动对大型加速器对中影响[J]. 强激光与粒子束, 2010, 22(4): 817–820. DOI: 10.3788/HPLPB20102204.0817http://dx.doi.org/10.3788/HPLPB20102204.0817.
LIU Jianbo, LI Hong, CHEN Nan, et al. Alignment for large-scale accelerator after ground vibration[J]. High Power Laser and Particle Beams, 2010, 22(4): 817–820. DOI: 10.3788/HPLPB20102204.0817http://dx.doi.org/10.3788/HPLPB20102204.0817.
Amirikas R, Bertolini A, Bialowons W, et al. Ground motion and comparison of various sites[R]. EUROTeV-Report-2005-023-1. DOI: 10.3204/PUBDB-2023-01489http://dx.doi.org/10.3204/PUBDB-2023-01489.
Wang X, Du H, Yan Z, et al. Research on ground vibration of the Shanghai synchrotron radiation facility[J]. Diamond Light Source Proceedings, 2010, 1(MEDSI–6): e3. DOI: 10.1017/s2044820110000110http://dx.doi.org/10.1017/s2044820110000110.
Yan F, Xu G, Wang Z Z, et al. Ground motion measurement and analysis for HEPS[C]. IPAC2018, Vancouver, BC, Canada. DOI:10.18429/JACoW-IPAC2018-MOPMF021http://dx.doi.org/10.18429/JACoW-IPAC2018-MOPMF021.
陆秋海, 李德葆. 工程振动试验分析[M]. 2版. 北京: 清华大学出版社, 2015: 139–190.
LU Qiuhai, LI Debao. Experimental analysis of engineering vibration[M]. 2nd ed. Beijing: Tsinghua University Press, 2015: 139–190.
0
Views
6
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution