浏览全部资源
扫码关注微信
1.宁波大学 理学院 宁波 315211
2.中国科学院上海应用物理研究所 物理生物学研究室 嘉定园区 上海 201800
3.中国科学院大学 北京 100049
Received:17 January 2017,
Revised:15 February 2017,
Published:2017-04
移动端阅览
Guokai YU, Yuhui WEI, Lin LIU, et al. Compression elastic property of DNA origami measured by atomic force microscopy[J]. Nuclear techniques, 2017, 40(4): 040501
Guokai YU, Yuhui WEI, Lin LIU, et al. Compression elastic property of DNA origami measured by atomic force microscopy[J]. Nuclear techniques, 2017, 40(4): 040501 DOI: 10.11889/j.0253-3219.2017.hjs.40.040501.
原子力显微术(Atomic force microscopy,AFM)的力学成像模式可在高分辨成像的同时,定量测量材料的力学性质。然而,对尺度小、质地薄而软的生物分子的弹性模量的测量仍然是一个挑战。本文以脱氧核糖核酸(Deoxyribonucleic acid,DNA)折纸为检测样品,将峰值力定量纳米力学模式(Peak Force Quantitative Nanomechanical Mapping,PF-QNM)作为测量手段研究了DNA分子的力学性质,探索不同作用力对DNA折纸弹性模量的影响。结果表明,当峰值力控制在80-100 pN时,峰值力成像稳定,获得的杨氏模量维持在约10MPa。与传统力曲线阵列模式(Force volume mapping,FV)相比较,在小力区( < 100 pN),两种方法符合性较好。这种峰值力定量纳米力学模式为DNA分子定量力学性质研究提供了一种简便而有效的研究方法。
Background
2
The mechanical mapping mode of atomic force microscopy (AFM) enables to measure mechanical properties of materials while imaging with high-resolution. However
to measure the elastic Young's modulus of biomolecules is still a challenge because they are so small
soft and thin.
Purpose
2
This study aims to explore the compression elasticity of DNA origami and the different forces on the effect of Young's measurement on the deoxyribonucleic acid (DNA) origami sample.
Methods
2
The peak force imaging mode (Peak Force Quantitative Nanomechanical Mapping
PF-QNM) was used to measure the Young's modulus of DNA origami under various activing forces.
Results
2
It was found that by using of 80-100pN peak forces
the elastic Young's modulus measurement results were relatively stable
keeping about 10 MPa for the peak force measurement on DNA origami. Compared with the traditional force volume contract mode (Force volume mapping
FV)
the values obtained consisted well with that of FV when the force were limited below 100 pN.
Conclusion
2
This method provided a simple and effective way for quantitative measuring the elasticity of DNA molecules.
G Binnig , C F Quate , C Gerber . Atomic force microscope . Physical Review Letters , 1986 . 56 ( 9 ): 930 - 933 . DOI: 10.1103/PhysRevLett.56.930 http://doi.org/10.1103/PhysRevLett.56.930 .
L X Kong , L J Wang , L L Su , . Amyloid fibril-supported Pd nanoparticles as electrocatalyst for hydrogen peroxide reduction . Nuclear Science and Techniques , 2016 . 27 ( 4 ): 97 DOI: 10.1007/s41365-016-0098-2 http://doi.org/10.1007/s41365-016-0098-2 .
杨 硕 , 汪 颖 , 杨 海军 , . 云母-石墨烯界面纳米尺度受限水层的湿润-去湿润研究 . 核技术 , 2016 . 39 ( 7 ): 070501 DOI: 10.11889/j.0253-3219.2016.hjs.39.070501 http://doi.org/10.11889/j.0253-3219.2016.hjs.39.070501 http://www.j.sinap.ac.cn/hejishu/CN/abstract/abstract618.shtml .
Shuo YANG , Ying WANG , Haijun YANG , . Studies on wetting-dewetting process of molecularly thin water adlayer confined between graphene and mica interface . Nuclear Techniques , 2016 . 39 ( 7 ): 070501 DOI: 10.11889/j.0253-3219.2016.hjs.39.070501 http://doi.org/10.11889/j.0253-3219.2016.hjs.39.070501 http://www.j.sinap.ac.cn/hejishu/CN/abstract/abstract618.shtml .
王 牡 , 蔡 继业 . 原子力显微镜在生物分子力学性质方面的研究 . 现代科学仪器 , 2010 . 26 ( 1 ): 118 - 121 . http://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201001037.htm .
Mu WANG , Jiye CAI . Application of atomic force microscope concerning mechanical properties of biological molecules . Modern Scientific Instruments , 2010 . 26 ( 1 ): 118 - 121 . http://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201001037.htm .
K Liu , Y Song , W Feng , . Extracting a single polyethylene oxide chain from a single crystal by a combination of atomic force microscopy imaging and single-molecule force spectroscopy: toward the investigation of molecular interactions in their condensed states . Journal of the American Chemical Society , 2011 . 133 ( 10 ): 3226 - 3229 . DOI: 10.1021/ja108022h http://doi.org/10.1021/ja108022h .
M Radmacher , J P Cleveland , M Fritz , . Mapping interaction forces with the atomic force microscope . Biophysical Journal , 1994 . 66 ( 6 ): 2159 - 2165 . DOI: 10.1016/S0006-3495(94)81011-2 http://doi.org/10.1016/S0006-3495(94)81011-2 .
H V Guzman , A P Perrino , R Garcia . Peak forces in high-resolution imaging of soft matter in liquid . ACS Nano , 2013 . 7 ( 4 ): 3198 - 3204 . DOI: 10.1021/nn4012835 http://doi.org/10.1021/nn4012835 .
L Picas , F Rico , S Scheuring . Direct measurement of the mechanical properties of lipid phases in supported bilayers . Biophysical Journal , 2012 . 102 ( 1 ): 1 - 3 . DOI: 10.1016/j.bpj.2011.11.4001 http://doi.org/10.1016/j.bpj.2011.11.4001 .
A Voss , C Dietz , A Stocker , . Quantitative measurement of the mechanical properties of human antibodies with sub-10-nm resolution in a liquid environment . Nano Research , 2015 . 8 ( 6 ): 1987 - 1996 . DOI: 10.1007/s12274-015-0710-5 http://doi.org/10.1007/s12274-015-0710-5 .
L J Wang , L X Kong , L L Su , . Nanomechanical properties of amyloid fibrils formed in a water nanofilm on mica surface . Chinese Physics Letters , 2016 . 33 ( 1 ): 018702 DOI: 10.1088/0256-307x/33/1/018702 http://doi.org/10.1088/0256-307x/33/1/018702 .
M H F Wilkins , A R Storkes , H R Wilson . Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids . Nature , 2003 . 421 ( 6921 ): 398 - 400 . DOI: 10.1038/171738a0 http://doi.org/10.1038/171738a0 .
C Yuan , H Chen , X W Lou , . DNA bending stiffness on small length scales . Physical Review Letters , 2008 . 100 ( 1 ): 145 - 150 . DOI: 10.1103/PhysRevLett.100.018102 http://doi.org/10.1103/PhysRevLett.100.018102 .
M E Hogan , R H Austin . Importance of DNA stiffness in protein DNA-binding specificity . Nature , 1987 . 329 ( 6136 ): 263 - 266 . DOI: 10.1038/329263a0 http://doi.org/10.1038/329263a0 .
X F Zhou , J L Sun , H J An , . Radial compression elasticity of single DNA molecules studied by vibrating scanning polarization force microscopy . Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2005 . 71 ( 6 Pt 1 ): 062901 DOI: 10.1103/PhysRevE.71.062901 http://doi.org/10.1103/PhysRevE.71.062901 .
P W Rothemund . Folding DNA to create nanoscale shapes and patterns . Nature , 2006 . 440 ( 7082 ): 297 - 302 . DOI: 10.1038/nature04586 http://doi.org/10.1038/nature04586 .
A P Perrino , R Garcia . How soft is a single protein? The stress-strain curve of antibody pentamers with 5 PN and 50 pm resolutions . Nanoscale , 2016 . 8 ( 17 ): 9151 - 9158 . DOI: 10.1039/c5nr07957h http://doi.org/10.1039/c5nr07957h .
Y Ke , S Lindsay , Y Chang , . Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays . Science , 2008 . 319 ( 5860 ): 180 - 183 . DOI: 10.1126/science.1150082 http://doi.org/10.1126/science.1150082 .
Pittenger B, Erina N, Su C. Mechanical property mapping at the nanoscale using peakforce QNM scanning probe technique[M]. Springer Netherlands, 2014, 203: 31-51. DOI: 10.1007/978-94-007-6919-9-2.
B V Derjaguin , V M Muller , Y P Toporov . Effect of contact deformations on the adhesion of particles . Journal of Colloid & Interface Science , 1975 . 53 ( 2 ): 314 - 326 . DOI: 10.1016/0021-9797(75)90018-1 http://doi.org/10.1016/0021-9797(75)90018-1 .
H J Butt , B Cappella , M Kappl . Force measurements with the atomic force microscope: technique, interpretation and applications . Surface Science Reports , 2005 . 59 ( 1-6 ): 151 - 152 . DOI: 10.1016/j.surfrep.2005.08.003 http://doi.org/10.1016/j.surfrep.2005.08.003 .
V V Tsukruk , H Shulha , X W Zhai . Nanoscale stiffness of individual dendritic molecules and their aggregates . Applied Physics Letters , 2003 . 82 ( 6 ): 907 - 909 . DOI: 10.1063/1.1544056 http://doi.org/10.1063/1.1544056 .
J Adamcik , A Berquand , R Mezzenga . Single-step direct measurement of amyloid fibrils stiffness by peak force quantitative nanomechanical atomic force microscopy . Applied Physics Letters , 2011 . 98 ( 19 ): 193701 DOI: 10.1063/1.3589369 http://doi.org/10.1063/1.3589369 .
G Smolyakov , C Formosa-dague , C Severac , . High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments . Micron , 2016 . 85 8 - 14 . DOI: 10.1016/j.micron.2016.03.002 http://doi.org/10.1016/j.micron.2016.03.002 .
0
Views
21
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution