浏览全部资源
扫码关注微信
1.中国科学院上海应用物理研究所 嘉定园区 上海 201800
2.中国科学院大学 北京 100049
Received:10 March 2017,
Revised:06 June 2017,
Published:10 August 2017
移动端阅览
Jiahao CHEN, Haiqing ZHANG, Zhiyong ZHU. Coupled neutronic and thermal-hydraulic analysis of TMSR-SF1 at steady state[J]. Nuclear techniques, 2017, 40(8): 080603
Jiahao CHEN, Haiqing ZHANG, Zhiyong ZHU. Coupled neutronic and thermal-hydraulic analysis of TMSR-SF1 at steady state[J]. Nuclear techniques, 2017, 40(8): 080603 DOI: 10.11889/j.0253-3219.2017.hjs.40.080603.
固态燃料钍基熔盐堆(Thorium Molten Salt Reactor-Solid Fuel,TMSR-SF1)作为第四代先进核反应堆堆型之一,继承了熔盐冷却剂和球形燃料元件的许多优点和技术基础,具有良好的经济性、设计上的固有安全性、钍铀燃料的可持续性和防核扩散性。本文以10 MW固态燃料钍基熔盐堆为模型,利用MCNP(Monte Carlo N Particle Transport Code)和ANSYS Fluent等模拟程序对其进行多物理耦合分析,同时利用C++语言编写了堆芯活性区的物理-热工耦合计算程序,实现了MCNP计算结果与Fluent程序的对接,通过对比耦合前后结果,分析了堆芯功率密度分布、有效增殖因子、温度分布等主要参数,为熔盐堆的设计、安全性评估和操作运行提供了参考依据。
Background
2
Neutronic and thermal-hydraulic simulations of advanced reactors can affect each other's results.
Purpose
2
This study focuses on coupling neutronic and thermal-hydraulic simulations to achieve more accurate results for future developments of 10-MW solid-fueled thorium molten salt experimental reactor (TMSR-SF1).
Methods
2
A program converting the MCNP (Monte Carlo N particle transport code) results to the spatial distribution of power density within the active region was created using C++ programming language. The spatial distribution data were loaded into the ANSYS Fluent in the form of user-defined function (UDF) to accomplish the coupling of the two simulation processes. In regards of TMSR-SF's original design parameters
the physical and thermal-hydraulic models of the whole core were established by using MCNP and ANSYS Fluent respectively.
Results
2
The coupling method is feasible and can be used to obtain reliable results. The changes in coolant's temperature and velocity in the active region are dependent on the power density distribution. The changes in multiplication factor
power density and maximum of discrepancy in coolant temperature are 1.08%
3.31% and 7.58 K
respectively.
Conclusion
2
It is necessary to take the coupling effects of the reactor core into consideration in the design of associated reactor systems. In addition
the results confirm that the design parameters of the TMSR-SF1 are reasonable.
D T Ingersoll , C W Forsberg , L J Ott , . Status of preconceptual design of the advanced high-temperature reactor (AHTR) , : United States Department of Energy , 2004 . DOI: 10.2172/861752 http://doi.org/10.2172/861752 .
江 绵恒 , 徐 洪杰 , 戴 志敏 . 未来先进核裂变能——TMSR核能系统 . 中国科学院院刊 , 2012 . 27 ( 3 ): 366 - 374 . DOI: 10.3969/j.issn.1000-3045.2012.03.016 http://doi.org/10.3969/j.issn.1000-3045.2012.03.016 .
Mianheng JIANG , Hongjie XU , Zhimin DAI . Advanced fission energy program-TMSR nuclear energy system . Bulletin of Chinese Academy of Sciences , 2012 . 27 ( 3 ): 366 - 374 . DOI: 10.3969/j.issn.1000-3045.2012.03.016 http://doi.org/10.3969/j.issn.1000-3045.2012.03.016 .
M S Cheng , Z M Dai . Development of a three dimension multi-physics code for molten salt fast reactor . Nuclear Science and Techniques , 2014 . 25 ( 1 ): 010601 DOI: 10.13538/j.1001-8042/nst.25.010601 http://doi.org/10.13538/j.1001-8042/nst.25.010601 .
薛 春 , 张 海青 , 朱 智勇 , . 组件型熔盐堆燃料组件的设计研究 . 核技术 , 2016 . 39 ( 9 ): 090602 DOI: 10.11889/j.02533219.2016.hjs.39.090602 http://doi.org/10.11889/j.02533219.2016.hjs.39.090602 http://www.j.sinap.ac.cn/hejishu/CN/abstract/abstract649.shtml .
Chun XUE , Haiqing ZHANG , Zhiyong ZHU , . Design of fuel assembly for molten-salt-cooled reactors . Nuclear Techniques , 2016 . 39 ( 9 ): 090602 DOI: 10.11889/j.0253-3219.2016.hjs.39.090602 http://doi.org/10.11889/j.0253-3219.2016.hjs.39.090602 http://www.j.sinap.ac.cn/hejishu/CN/abstract/abstract649.shtml .
J Kophazi , D Lathouwers , J L Kloosterman . Development of a three-dimensional time-dependent calculation scheme for molten salt reactors and validation of the measurement data of the molten salt reactor experiment . Nuclear Science and Engineering , 2009 . 163 ( 2 ): 118 - 131 . DOI: 10.13182/NSE163-118 http://doi.org/10.13182/NSE163-118 .
Z H Zhang , X B Xia , J Cai , . Simulation of radiation dose distribution and thermal analysis for the bulk shielding of an optimized molten salt reactor . Nuclear Science and Techniques , 2015 . 26 ( 4 ): 040603 DOI: 10.13538/j.1001-8042/nst.26.040603 http://doi.org/10.13538/j.1001-8042/nst.26.040603 .
Z P Guo , C L Wang , D L Zhang , . The effects of core zoning on optimization of design analysis of molten salt reactor . Nuclear Engineering and Design , 2013 . 265 967 - 977 . DOI: 10.1016/j.nucengdes.2013.09.036 http://doi.org/10.1016/j.nucengdes.2013.09.036 .
Z P Guo , J J Zhou , D L Zhang , . Coupled neutronics/thermal-hydraulics for analysis of molten salt reactor . Nuclear Engineering and Design , 2013 . 258 ( 2 ): 144 - 156 . DOI: 10.1016/j.nucengdes.2013.01.013 http://doi.org/10.1016/j.nucengdes.2013.01.013 .
J J Zhou , C L Wang , H Z An , . Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in steady state condition . Nuclear Engineering and Design , 2014 . 267 ( 2 ): 88 - 99 . DOI: 10.1016/j.nucengdes.2013.11.074 http://doi.org/10.1016/j.nucengdes.2013.11.074 .
L S Li , H M Yuan , K Wang . Coupling of RMC and CFX for analysis of Pebble Bed-Advanced High Temperature Reactor core . Nuclear Engineering and Design , 2012 . 250 385 - 391 . DOI: 10.1016/j.nucengdes.2012.05.036 http://doi.org/10.1016/j.nucengdes.2012.05.036 .
何 杰 , 夏 晓彬 , 蔡 军 , . 2 MW液态钍基熔盐实验堆主屏蔽温度场分析 . 核技术 , 2016 . 39 ( 4 ): 040601 DOI: 10.11889/j.0253-3219.2016.hjs.39.040601 http://doi.org/10.11889/j.0253-3219.2016.hjs.39.040601 http://www.j.sinap.ac.cn/hejishu/CN/abstract/abstract572.shtml .
Jie HE , Xiaobin XIA , Jun CAI , . Temperature field analysis for the main shielding of the 2-MW thorium-based molten salt experimental reactor . Nuclear Techniques , 2016 . 39 ( 4 ): 040601 DOI: 10.11889/j.0253-3219.2016.hjs.39.040601 http://doi.org/10.11889/j.0253-3219.2016.hjs.39.040601 http://www.j.sinap.ac.cn/hejishu/CN/abstract/abstract572.shtml .
M Fratoni , E Greenspan . Neutronic feasibility assessment of liquid salt-cooled pebble bed reactors . Nuclear Science and Engineering , 2011 . 168 ( 1 ): 1 - 22 . DOI: 10.13182/NSE10-38 http://doi.org/10.13182/NSE10-38 .
C Y Wu , Y M Ferng , C C Chieng , . Investigating the advantages and disadvantages of realistic approach and porous approach for closely packed pebbles in CFD simulation . Nuclear Engineering and Design , 2010 . 240 ( 5 ): 1151 - 1159 . DOI: 10.1016/j.nucengdes.2010.01.015 http://doi.org/10.1016/j.nucengdes.2010.01.015 .
M Vazquez , H Tsige-Tamirat , L Ammirabile , . Coupled neutronics thermal-hydraulics analysis using Monte Carlo and sub-channel codes . Nuclear Engineering and Design , 2012 . 250 ( 3 ): 403 - 411 . DOI: 10.1016/j.nucengdes.2012.06.007 http://doi.org/10.1016/j.nucengdes.2012.06.007 .
J L Conlin , W Ji , J C Lee , . Pseudo material construct for coupled neutronic-thermal-hydraulic analysis of VHTGR . Transactions of American Nuclear Society , 2005 . 92 225 - 227 . http://cat.inist.fr/?aModele=afficheN&cpsidt=16812534 .
J Hu , Rizwan-uddin . Coupled neutronics and thermal-hydraulics simulations using MCNP and FLUENT . Transactions of the American Nuclear Society , 2008 . 98 606 - 608 . https://experts.illinois.edu/en/publications/coupled-neutronics-and-thermal-hydraulics-simulations-using-mcnp- .
0
Views
31
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution