浏览全部资源
扫码关注微信
1.清华大学 工程物理系 北京 100084
2.中广核研究院有限公司 深圳 518000
Received:27 February 2017,
Revised:19 April 2017,
Published:10 August 2017
移动端阅览
Shixian LI, Jingquan LIU, Yonggang SHEN. Fault diagnosis of LOCA based on ANN methods[J]. Nuclear techniques, 2017, 40(8): 080604
Shixian LI, Jingquan LIU, Yonggang SHEN. Fault diagnosis of LOCA based on ANN methods[J]. Nuclear techniques, 2017, 40(8): 080604 DOI: 10.11889/j.0253-3219.2017.hjs.40.080604.
冷却剂丧失事故(Loss of Coolant Accident,LOCA)是核电厂安全分析中的一类典型事故,不同的破口位置和破口尺寸将直接影响到事故的处置和后果。为判断LOCA事故的破口位置和尺寸,可以借助于神经网络的模式识别功能。针对CPR1000核电系统,利用CATHARE软件建模并仿真不同破口位置和尺寸的LOCA事故,提取事故发生时的6类热工水力参数对BP(Back Propagation)神经网络、Elman神经网络、RBF(Radial Basis Function)神经网络和支持向量机进行训练,再将训练后的神经网络用于破口位置和尺寸的诊断。结果表明,在4种神经网络中,参数优化后的支持向量机对破口位置和尺寸的诊断准确率较高且诊断稳定性较好。在LOCA事故发生时,可以利用支持向量机获取破口的详细信息,辅助操纵员高效地处理事故。
Background
2
Loss of coolant accident (LOCA) is one of the typical accidents in safety analysis of nuclear power plant and the location and the size of break will affect its treatment and consequences directly.
Purpose
2
This study aims to diagnose the location and the size of break by using artificial neural network (ANN) based pattern recognition approach.
Methods
2
CATHARE program was used to model and simulate different location and size of break in LOCA for the CPR1000 nuclear power system. Six types of thermal-hydraulic parameters were extracted to train four types of ANN methods (back propagation (BP) neural network
Elman neural network
radial basis function (RBF) neural network and support vector machine) and the trained ANNs were utilized to diagnose the location and the size of break.
Results
2
The optimized support vector machine (SVM) is best method in terms of diagnosis accuracy and stability among 4 ANNs.
Conclusion
2
The operators can obtain more detailed information about break by SVM to deal with the accident efficiently
when a LOCA happens.
林 支康 , 殷 煜皓 , 梁 国兴 . AP1000核电厂RELAP5 SB-LOCA分析模式建立与应用 . 电力与能源 , 2011 . 6 457 - 461 . http://www.cnki.com.cn/Article/CJFDTOTAL-LYJI201106011.htm .
Zhikang LIN , Yuhao YIN , Guoxing LIANG . Establishing and application of AP1000 nuclear power plant RELAPS-code SB-LOCA model . Power & Energy , 2011 . 6 457 - 461 . http://www.cnki.com.cn/Article/CJFDTOTAL-LYJI201106011.htm .
中广核工程有限公司 . 中国百万千瓦级核电自主化依托工程 , : 北京 中国原子能出版社 , 2013 .
China Nuclear Power Engineering Co., Ltd . China's million kilowatt class nuclear power self-reliance project , : Beijing China Atomic Energy Press , 2013 .
T V Santosh , G Vinod , A K Saraf , . Application of artificial neural networks to nuclear power plant transient diagnosis . Reliability Engineering and System Safety , 2007 . 92 1468 - 1472 . DOI: 10.1016/j.ress.2006.10.009 http://doi.org/10.1016/j.ress.2006.10.009 .
S W Cheon , S H Chang , H Y Chung , . Application of neural networks to multiple alarm processing and diagnosis in nuclear power plants . IEEE Transactions on Nuclear Science , 1993 . 40 ( 1 ): 11 - 20 . DOI: 10.1109/23.199482 http://doi.org/10.1109/23.199482 .
赵 云飞 , 张 立国 , 童 节娟 , . BP神经网络在AP1000核电站事故诊断应用中的初步研究 . 原子能科学技术 , 2014 . 48 ( S1 ): 480 - 484 . DOI: 10.7539/YZK.2014.48.S0.0480 http://doi.org/10.7539/YZK.2014.48.S0.0480 .
Yunfei ZHAO , Liguo ZHANG , Jiejuan TONG , . Preliminary study on application of BP neural network in AP1000 nuclear power plant accident diagnosis . Atomic Energy Science and Technology , 2014 . 48 ( S1 ): 480 - 484 . DOI: 10.7539/YZK.2014.48.S0.0480 http://doi.org/10.7539/YZK.2014.48.S0.0480 .
蔡 猛 , 张 大发 , 张 宇声 . 基于遗传算法的核动力设备实时故障诊断系统 . 核动力工程 , 2009 . 30 ( 3 ): 111 - 114, 130 . http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200903025.htm .
Meng CAI , Dafa ZHANG , Yusheng ZHANG . Nuclear power plant real-time fault diagnosis system based on genetic algorithm . Nuclear Power Engineering , 2009 . 30 ( 3 ): 111 - 114, 130 . http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200903025.htm .
刘 永阔 , 夏 虹 , 谢 春丽 , . BP-RBF神经网络在核电厂故障诊断中的应用 . 原子能科学技术 , 2008 . 42 ( 3 ): 193 - 199 . http://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200803001.htm .
Yongkuo LIU , Hong XIA , Chunli XIE , . Application of BP-RBF neural network to fault diagnosis of nuclear power plant . Atomic Energy Science and Technology , 2008 . 42 ( 3 ): 193 - 199 . http://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200803001.htm .
肖 岷 , 郝 思雄 , 韩 庆浩 , . 中广核CPR1000核岛堆芯概念设计和安全裕度评估初探 . 核动力工程 , 2005 . ( S1 ): 11 - 18 . http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2005S1003.htm .
Min XIAO , Sixiong HAO , Qinghao HAN , . Primary study on core concept design and safety margin of CPR1000 . Nuclear Power Engineering , 2005 . ( S1 ): 11 - 18 . http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2005S1003.htm .
谢 春丽 , 夏 虹 , 刘 永阔 , . BP神经网络改进算法在核电设备故障诊断中的应用 . 核动力工程 , 2007 . 28 ( 4 ): 85 - 90 . http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200704019.htm .
Chunli XIE , Hong XIA , Yongkuo LIU , . Application of improved BP algorithm in fault diagnosis of nuclear power equipment . Nuclear Power Engineering , 2007 . 28 ( 4 ): 85 - 90 . http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200704019.htm .
熊 晋魁 , 谢 春玲 , 施 小成 , . RBF人工神经网络在核电厂故障诊断中的应用 . 核动力工程 , 2006 . 27 ( 3 ): 57 - 60, 96 . http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200603012.htm .
Jinkui XIONG , Chunling XIE , Xiaocheng SHI , . Application of RBF artificial neural network to fault diagnose in nuclear power plant . Nuclear Power Engineering , 2006 . 27 ( 3 ): 57 - 60, 96 . http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200603012.htm .
S Seker , E Ayaz , E Türkcan . Elman's recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery . Engineering Applications of Artificial Intelligence , 2003 . 16 647 - 656 . DOI: 10.1016/j.engappai.2003.10.004 http://doi.org/10.1016/j.engappai.2003.10.004 .
汤 宝平 , 习 建民 , 李 锋 . 基于Elman神经网络的旋转机械故障诊断 . 计算机集成制造系统 , 2010 . 10 2148 - 2152 . http://cdmd.cnki.com.cn/Article/CDMD-10220-2004050719.htm .
Baoping TANG , Jianmin XI , Feng LI . Fault diagnosis for rotating machinery based on Elman neural network . Computer Integrated Manufacturing Systems , 2010 . 10 2148 - 2152 . http://cdmd.cnki.com.cn/Article/CDMD-10220-2004050719.htm .
X G Zhang . Introduction to statistical learning theory and support vector machines . Acta Automatica Sinica , 2000 . 26 ( 1 ): 33 - 41 . http://en.cnki.com.cn/Article_en/CJFDTOTAL-MOTO200001005.htm .
袁 胜发 , 褚 福磊 . 支持向量机及其在机械故障诊断中的应用 . 振动与冲击 , 2007 . 11 29 - 35, 181 . DOI: 10.3969/j.issn.1000-3835.2007.02.008 http://doi.org/10.3969/j.issn.1000-3835.2007.02.008 .
Shengfa YUAN , Fulei CHU . Support vector machines and its applications in machine fault diagnosis . Journal of Vibration and Shock , 2007 . 11 29 - 35, 181 . DOI: 10.3969/j.issn.1000-3835.2007.02.008 http://doi.org/10.3969/j.issn.1000-3835.2007.02.008 .
宋 梅村 , 蔡 琦 . 基于支持向量回归的设备故障趋势预测 . 原子能科学技术 , 2011 . 45 ( 8 ): 972 - 976 . http://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201108013.htm .
Meicun SONG , Qi CAI . Fault trend prediction of device based on support vector regression . Atomic Energy Science and Technology , 2011 . 45 ( 8 ): 972 - 976 . http://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201108013.htm .
黄 彦平 , 曹 念 , 文 彦 , . CATHARE程序的主要特征及应用 . 核动力工程 , 2003 . 24 ( 6 ): 540 - 544 . http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200306010.htm .
Yanping HUANG , Nian CAO , Yan WEN , . Main features of CATHARE code and its application . Nuclear Power Engineering , 2003 . 24 ( 6 ): 540 - 544 . http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200306010.htm .
陈 明 . MATLAB神经网络原理与实例精解 , : 北京 清华大学出版社 , 2013 .
Ming CHEN . MATLAB neural network theory and examples , : Beijing Tsinghua University Press , 2013 .
李 坤 , 刘 鹏 , 吕 雅洁 , . 基于Spark的LIBSVM参数优选并行化算法 . 南京大学学报(自然科学) , 2016 . 52 ( 2 ): 343 - 352 . http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201602016.htm .
Kun LI , Peng LIU , Yajie LYU , . The parallel algorithms for LIBSVM parameter optimization based on Spark . Journal of Nanjing University (Natural Sciences) , 2016 . 52 ( 2 ): 343 - 352 . http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201602016.htm .
王 小川 . MATLAB神经网络43个案例分析 , : 北京 北京航空航天大学出版社 , 2013 .
Xiaochuan WANG . MATLAB neural network analysis of 43 cases , : Beijing Beijing University of Aeronautics and Astronautics Press , 2013 .
0
Views
25
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution