浏览全部资源
扫码关注微信
1.中国科学院上海应用物理研究所 嘉定园区 上海 201800
2.中国科学院大学 北京 100049
3.上海科技大学 上海 201210
Received:20 November 2017,
Revised:14 February 2018,
Published:10 April 2018
移动端阅览
Jiayu LIU, Hua LI, Lailai QIN, et al. The performance of solid polymer electrolysis tritium enrichment system[J]. Nuclear techniques, 2018, 41(4): 040502
Jiayu LIU, Hua LI, Lailai QIN, et al. The performance of solid polymer electrolysis tritium enrichment system[J]. Nuclear techniques, 2018, 41(4): 040502 DOI: 10.11889/j.0253-3219.2018.hjs.41.040502.
固体聚合物氚电解浓缩法是目前浓缩环境低氚水的主流方法,其性能评价的关键是能否获得较高的氚回收率。在电解体积浓缩倍数为常数时,氚分离系数决定了氚回收率的高低。为了提高氚电解浓缩系统的回收率,研究以分离系数为评价指标,从阴阳极材料、电解电流、电解水温度上优化固体聚合物氚电解浓缩系统。结果表明:在电解初始体积≥400 mL、电解装置电流15 A、电解水温度5℃、电解剩余体积≤25 mL的优化条件下,成功研制氚分离系数6.5以上、回收率≥65%的固体聚合物氚电解浓缩系统。
Background
2
The solid polymer tritium electrolysis enrichment method is the mainstream to concentrate low-level tritium water. Its performance depends on whether it can obtain high tritium recovery. As the volume concentration factor is constant
the tritium separation coefficient determines the value of tritium recovery.
Purpose
2
This paper aims to enhance the tritium recovery of solid polymer electrolysis tritium enrichment system and improve the performance of tritium enrichment system.
Methods
2
The separation coefficient was adopted as an index to optimize the solid polymer tritium enrichment system on cathode and anode materials
electrolytic current and electrolysis temperature.
Results
2
With the initial volume ≥ 400 mL
the current of electrolytic water electrolysis device at 15 A
the temperature at 5℃
electrolysis residual volume ≤ 25 mL
we have been obtained the optimized tritium separation coefficient of 6.5
the tritium concentration system recovery factor ≥ 65%.
Conclusion
2
The performance of solid polymer electrolysis tritium enrichment system almost achieves international level.
M Saito , S Takata , T Shimamune , . Tritium enrichment by electrolysis using solid polymer electrolyte . Radioisotopes , 1996 . 45 285 - 292 . DOI: 10.3769/radioisotopes.45.285 http://doi.org/10.3769/radioisotopes.45.285 .
王 华 , 殷 建军 , 杨 会 , . 聚合膜电解浓集法测量低水平氚环境水样的氚比活度 . 岩矿测试 , 2011 . 30 ( 6 ): 745 - 750 . DOI: 10.3969/j.issn.0254-5357.2011.06.017 http://doi.org/10.3969/j.issn.0254-5357.2011.06.017 .
Hua WANG , Jianjun YIN , Hui YANG , . Application of the solid polymer electrolysis enrichment method for low level tritium in environmental water and the calculation of tritium specific activity . Rock & Mineral Analysis , 2011 . 30 ( 6 ): 745 - 750 . DOI: 10.3969/j.issn.0254-5357.2011.06.017 http://doi.org/10.3969/j.issn.0254-5357.2011.06.017 .
M Saito , H Imaizumi , N Kato , . Comparison between anode side and cathode side for tritium enrichment of solid polymer electrolysis . Electrochemistry , 2009 . 77 ( 5 ): 370 - 372 . DOI: 10.5796/electrochemistry.77.370 http://doi.org/10.5796/electrochemistry.77.370 .
张 向阳 , 张 琳 , 贾 艳琨 , . 氘-氚分馏系数法确定氚的电解回收率 . 核电子学与探测技术 , 2016 . 36 ( 3 ): 321 - 324 . DOI: 10.3969/j.issn.0258-0934.2016.03.020 http://doi.org/10.3969/j.issn.0258-0934.2016.03.020 .
Xiangyang ZHANG , Lin ZHANG , Yankun JIA , . Attainment the electrolytic recovery of tritium by the relationship between deuterium and tritium separation factors . Nuclear Electronics & Detection Technology , 2016 . 36 ( 3 ): 321 - 324 . DOI: 10.3969/j.issn.0258-0934.2016.03.020 http://doi.org/10.3969/j.issn.0258-0934.2016.03.020 .
P Walker . Deuterium and heavy water-a selected bibliography . Journal of Nuclear Materials , 1977 . 64 ( 3 ): 320 - 320 . DOI: 10.1016/0022-3115(77)90089-7 http://doi.org/10.1016/0022-3115(77)90089-7 .
张 向阳 , 刘 福亮 , 张 琳 , . 电解法浓缩环境氚水样的性能研究 . 核电子学与探测技术 , 2012 . 32 ( 11 ): 1301 - 1304 . DOI: 10.3969/j.issn.0258-0934.2012.11.017 http://doi.org/10.3969/j.issn.0258-0934.2012.11.017 .
Xiangyang ZHANG , Fuliang LIU , Lin ZHANG , . Study on properties of electrolytic method enriching the environmental tritium . Nuclear Electronics & Detection Technology , 2012 . 32 ( 11 ): 1301 - 1304 . DOI: 10.3969/j.issn.0258-0934.2012.11.017.issn.0258-0934.2012.11.017 http://doi.org/10.3969/j.issn.0258-0934.2012.11.017.issn.0258-0934.2012.11.017 .
Muranaka T, Shima N. Electrolytic enrichment of tritium in water using SPE film[A]. Vladimir L, Janis K. Electrolysis[C] . Japan: InTech, 2012: 62-141. DOI: 10.5772/52705 http://dx.doi.org/10.5772/52705 . http://www.researchgate.net/publication/300239620_Electrolytic_Enrichment_of_Tritium_in_Water_Using_SPE_Film
M Saito . Enrichment reliability of solid polymer electrolysis for tritium water analysis . Journal of Radioanalytical & Nuclear Chemistry , 2008 . 275 ( 2 ): 407 - 410 . DOI: 10.1007/s10967-007-6894-8 http://doi.org/10.1007/s10967-007-6894-8 .
O M Ivanchuk , V G Goryanina , M B Rozenkevich . Isotopic effects of hydrogen during the decomposition of water in electrolysis with a solid polymer electrolyte . Atomic Energy , 2000 . 89 ( 3 ): 745 - 749 . DOI: 10.1023/A:1009416417912 http://doi.org/10.1023/A:1009416417912 .
A A Kornyshev , A M Kuznetsov , E Spohr , . Kinetics of proton transport in water . Cheminform , 2003 . 34 ( 25 ): 183 - 184 . DOI: 10.1021/jp020857d http://doi.org/10.1021/jp020857d .
朱 正和 , 傅 依备 , 孙 颖 , . CECE法重水电解分离氚的热力学研究 . 中国工程科学 , 2008 . 10 ( 5 ): 19 - 24 . DOI: 10.3969/j.issn.1009-1742.2008.05.004 http://doi.org/10.3969/j.issn.1009-1742.2008.05.004 .
Zhenghe ZHU , Yibei FU , Ying SUN , . Thermodynamic study for the separation of tritium by CECE method from heavy water . Engineering Sciences , 2008 . 10 ( 5 ): 19 - 24 . DOI: 10.3969/j.issn.1009-1742.2008.05.004 http://doi.org/10.3969/j.issn.1009-1742.2008.05.004 .
Y Ogata , Y Sakuma , N Ohtani , . Tritium separation by electrolysis using solid polymer electrolyte . Fusion Science & Technology , 2005 . 48 ( 1 ): 136 - 139 . DOI: 10.13182/FST05-A897 http://doi.org/10.13182/FST05-A897 .
孟建波, 桑革, 薛炎, 等. SPE水电解进行H/D同位素分离研究[C]. 中国核学会核材料分会2007年度学术交流会, 2007. DOI: 10.3969/j.issn.1000-0518 http://dx.doi.org/10.3969/j.issn.1000-0518 . 2007. 12. 017.
MENG Jianbo, SANG Ge, XUE Yan, et al . H/D isotope separation in SPE water electrolysis[C]. 2007 Annual Academic Meeting of Nuclear Materials Branch of China Nuclear Society, 2007. DOI: 10.3969/j.issn.1000-0518 http://dx.doi.org/10.3969/j.issn.1000-0518 . 2007. 12. 017.
Y Takahashi , Y Sekiya , H Imaizumi , . Effects of magnetic field and temperature on the tritium separation factor under the SPE electrolysis . Radioisotopes , 2009 . 58 ( 7 ): 469 - 475 . DOI: 10.3769/radioisotopes.58.469 http://doi.org/10.3769/radioisotopes.58.469 .
T Reier , H N Nong , D Teschner , . Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts . Advanced Energy Materials , 2017 . 7 ( 1 ): 1601275 DOI: 10.1002/aenm.201601275 http://doi.org/10.1002/aenm.201601275 .
孟 建波 , 桑 革 , 薛 炎 , . 多种电极的SPE水电解性能研究 . 电化学 , 2007 . 13 ( 2 ): 156 - 159 . DOI: 10.3969/j.issn.1006-3471.2007.02.009 http://doi.org/10.3969/j.issn.1006-3471.2007.02.009 .
Jianbo MENG , Ge SANG , Yan XUE , . The research of several electrodes for SPE water electrolysis . Electrochemical , 2007 . 13 ( 2 ): 156 - 159 . DOI: 10.3969/j.issn.1006-3471.2007.02.009.issn.1006-3471.2007.02.009 http://doi.org/10.3969/j.issn.1006-3471.2007.02.009.issn.1006-3471.2007.02.009 .
周 锡煌 , 徐 大钢 , 徐 文蕊 , . 铁阴极电流密度对氢同位素电解分离因数的影响 . 化学通报 , 1982 . ( 9 ): 000056 - 000057 . http://www.cnki.com.cn/Article/CJFDTotal-YYHX198801004.htm .
Xihuang ZHOU , Dagang XU , Wenrui XU , . Effect of iron cathode current density on electrolysis separation factor of hydrogen isotope . Chemistry , 1982 . ( 9 ): 000056 - 000057 . http://www.cnki.com.cn/Article/CJFDTotal-YYHX198801004.htm .
马 霄平 , 宋 世栋 , 谭 忠印 , . 固体聚合物电解质水电解池电极的优化研究 . 电源技术 , 2006 . 30 ( 8 ): 621 - 624 . DOI: 10.3969/j.issn.1002-087X.2006.08.005 http://doi.org/10.3969/j.issn.1002-087X.2006.08.005 .
Xiaoping MA , Shidong SONG , Zhongyin TAN , . Optimization of membrane electrodes for SPE water electrolysis . Journal of Power Sources , 2006 . 30 ( 8 ): 621 - 624 . DOI: 10.3969/j.issn.1002-087X.2006.08.005 http://doi.org/10.3969/j.issn.1002-087X.2006.08.005 .
K Su , X Yao , S Sheng , . Ionomer content effects on the electrocatalyst layer with in-situ grown Pt nanowires in PEMFCs . International Journal of Hydrogen Energy , 2014 . 39 ( 7 ): 3219 - 3225 . DOI: 10.1016/j.ijhydene.2013.12.117 http://doi.org/10.1016/j.ijhydene.2013.12.117 .
0
Views
26
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution