浏览全部资源
扫码关注微信
武汉大学物理科学与技术学院 物理国家级实验教学示范中心(武汉大学) 湖北省核固体物理重点实验室 武汉 430072
Received:13 April 2018,
Revised:05 May 2018,
Published:2018-09
移动端阅览
Chunlong YAO, Zhejie ZHU, Jianjian SHI, et al. Microstructures of the phase transition of nano-magnesium hydroxide to nano-magnesium oxide by positron annihilation lifetime spectroscopy[J]. Nuclear techniques, 2018, 41(9): 090201
Chunlong YAO, Zhejie ZHU, Jianjian SHI, et al. Microstructures of the phase transition of nano-magnesium hydroxide to nano-magnesium oxide by positron annihilation lifetime spectroscopy[J]. Nuclear techniques, 2018, 41(9): 090201 DOI: 10.11889/j.0253-3219.2018.hjs.41.090201.
用添加聚乙二醇(Polyethylene Glycol,PEG)表面活性剂的直接沉淀法合成氢氧化镁纳米粉末,将其在不同温度下煅烧得到的纳米氢氧化镁和纳米氧化镁,采用正电子湮没寿命谱(Positron Annihilation Lifetime Spectroscopy,PALS)、X射线衍射(X-ray Diffraction,XRD)、热重分析(Thermal Gravimetric Analysis,TGA)、场发射扫描电子显微镜(Field Emission Scanning Electron Microscope,FESEM)和氮气吸附脱附实验(N
2
adsorption-desorption)等方法研究了纳米氢氧化镁转变为氧化镁过程中的微观变化机制。研究结果表明:实验制得的纳米氢氧化镁为厚度15 nm左右的片状形貌,在300℃左右热分解为直径30 nm左右的纳米球状氧化镁,颗粒大小均匀,分散性较好。正电子寿命测量发现两个长寿命分量
τ
3
、
τ
4
分别反映样品内部微孔和介孔的信息,在250~300℃的相转变温度区间,
I
4
显著升高,同时
I
3
却迅速减小,说明纳米氢氧化镁转变氧化镁时介孔数量突然增大,而微孔的数量迅速减少。由改进的Tao-Eldrup模型计算得到的孔径尺寸与氮气吸附脱附实验测量孔径分布的最可几孔径(2~4 nm)基本吻合,有理由推测在片状氢氧化镁转变球状的氧化镁时因晶粒长大、重组导致大量微孔发生迁移聚集成了较大的介孔;另一方面,水分子的脱离促进了晶粒内空位团和微孔不断产生、迁移和聚集。
Background
2
Magnesium hydroxide and magnesium oxide are both important metal compounds with many excellent properties which make them have great application prospects in various fields of industry and environmental protection
such as flame-retardant
antibacterial agents
water/gas treatment
catalysts.
Purpose
2
This paper focus on analysis of the microstructure of magnesium hydroxide at different calcining temperatures
especially the changes of vacancy clusters and pores before and after phase transition temperature.
Methods
2
Nano-magnesium hydroxide was prepared by direct precipitation method with the addition of polyethylene glycol (PEG) surfactant and nano-magnesium oxide was obtained by calcining nano-magnesium hydroxide. The microstructure and defects of both magnesium hydroxide and magnesium oxide were investigated by positron annihilation lifetime spectroscopy (PALS)
X-ray diffraction (XRD)
thermal gravimetric analysis (TGA)
field emission scanning electron microscopy (FESEM) and nitrogen adsorption-desorption experiment.
Results
2
The original magnesium hydroxide particle prepared by direct precipitation method has flake -like morphology with about 15 nm thickness. Corresponding magnesium oxide is a sphere-like particle with a size of about 30 nm and good dispersivity. The positron lifetime measurement found that two long lifetime components
τ
3
and
τ
4
reflect the information of micropores and mesopores in the samples
respectively. When the nano-magnesium hydroxide transformed to nano-magnesium oxide in the temperature range of 250~300℃
relative intensity
I
4
increases significantly and
I
3
decreases rapidly
indicating that the number of mesopores increases suddenly
while the number of micropores decreases rapidly. The pore size calculated by the improved Tao-Eldrup model is consistent with the pore size (2~4 nm) measured by nitrogen adsorption-desorption experiment.
Conclusion
2
Flake-like nano-magnesium hydroxide was synthesized by precipitation method with the addition of PEG surfactant. Sphere-like nano-magnesium oxide was obtained by calcining nano-magnesium hydroxide in the temperature range of 300~700℃. During the phase transition from nano-magnesium hydroxide to nano-magnesium oxide
a large number of micropores are migrated and integrated into larger mesoporous pores because of growth and recombination of the grain. On the other hand
the removement of water molecules promotes formation
migration and aggregation of the vacancy clusters and microvoids.
L Z Qiu , R C Xie , P Ding , . Preparation and characterization of Mg(OH) 2 nanoparticles and flame-retardant property of its nanocomposites with EVA . Composite Structures , 2003 . 62 ( 3-4 ): 391 - 395 . DOI: 10.1016/j.compstruct.2003.09.010 http://doi.org/10.1016/j.compstruct.2003.09.010 .
M H Liu , Y H Wang , L T Chen , . Mg(OH) 2 supported nanoscale zero valent iron enhancing the removal of Pb(Ⅱ) from aqueous solution . ACS Applied Materials & Interfaces , 2015 . 7 ( 15 ): 7961 - 7969 . DOI: 10.1021/am509184e http://doi.org/10.1021/am509184e .
C X Dong , J Cairney , Q H Sun , . Investigation of Mg(OH) 2 nanoparticles as an antibacterial agent . Journal of Nanoparticle Research , 2010 . 12 ( 6 ): 2101 - 2109 . DOI: 10.1007/s11051-009-9769-9 http://doi.org/10.1007/s11051-009-9769-9 .
F Al-Hazmi , A Umar , G N Dar , . Microwave assisted rapid growth of Mg(OH) 2 nanosheet networks for ethanol chemical sensor application . Journal of Alloys and Compounds , 2012 . 519 4 - 8 . DOI: 10.1016/jallcom.2011.09.089 http://doi.org/10.1016/jallcom.2011.09.089 .
A Samodi , A Rashidi , K Marjani , . Effects of surfactants, solvents and time on the morphology of MgO nanoparticles prepared by the wet chemical method . Materials Letters , 2013 . 109 269 - 274 . DOI: 10.1016/j.matlet.2013.07.085 http://doi.org/10.1016/j.matlet.2013.07.085 .
S Makhluf , R Dror , Y Nitzan , . Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide . Advanced Functional Materials , 2005 . 15 ( 10 ): 1708 - 1715 . DOI: 10.1002/adfm.200500029 http://doi.org/10.1002/adfm.200500029 .
P Tian , X Y Han , G L Ning , . Synthesis of porous hierarchical MgO and its superb adsorption properties . ACS Applied Materials & Interfaces , 2013 . 5 ( 23 ): 12411 - 12418 . DOI: 10.1021/am403352y http://doi.org/10.1021/am403352y .
A Ganguly , P Trinh , K V Ramanujachary , . Reverse micellar based synthesis of ultrafine MgO nanoparticles (8-10 nm):characterization and catalytic properties . Journal of Colloid and Interface Science , 2011 . 353 ( 1 ): 137 - 142 . DOI: 10.1016/j.jcis.2010.09.041 http://doi.org/10.1016/j.jcis.2010.09.041 .
N Obradovic , M Mitric , M V Nikolic , . Influence of MgO addition on the synthesis and electrical properties of sintered zinc-titanate ceramics . Journal of Alloys and Compounds , 2009 . 471 ( 1-2 ): 272 - 277 . DOI: 10.1016/j.jallcom.2008.03.090 http://doi.org/10.1016/j.jallcom.2008.03.090 .
A A Pilarska , Ł Klapiszewski , T Jesionowski . Recent development in the synthesis, modification and application of Mg(OH) 2 and MgO:a review . Powder Technology , 2017 . 319 373 - 407 . DOI: 10.1016/j.powtec.2017.07.009 http://doi.org/10.1016/j.powtec.2017.07.009 .
L Kumari , W Z Li , C H Vannoy , . Synthesis, characterization and optical properties of Mg(OH) 2 micro-/nanostructure and its conversion to MgO . Ceramics International , 2009 . 35 ( 8 ): 3355 - 3364 . DOI: 10.1016/j.ceramint.2009.05.035 http://doi.org/10.1016/j.ceramint.2009.05.035 .
D L Jin , X Y Gu , X J Yu , . Hydrothermal synthesis and characterization of hexagonal Mg(OH) 2 nano-flake as a flame retardant . Materials Chemistry and Physics , 2008 . 112 ( 3 ): 962 - 965 . DOI: 10.1016/j.matchemphys.2008.07.058 http://doi.org/10.1016/j.matchemphys.2008.07.058 .
景 殿策 , 王 宝和 , 张 伟 , . 纳米氢氧化镁粉体的制备及热分解动力学研究 . 中国粉体技术 , 2006 . 12 ( 5 ): 24 - 27 . DOI: 10.13732/j.issn.1008-5548.2006.05.008.JING http://doi.org/10.13732/j.issn.1008-5548.2006.05.008.JING .
Diance JING , Baohe WANG , Wei ZHANG , . Preparation and thermal decomposition kinetics of nano magnesium hydroxide powder . China Powder Science and Technology , 2006 . 12 ( 5 ): 24 - 27 . DOI: 10.13732/j.issn.1008-5548.2006.05.008 http://doi.org/10.13732/j.issn.1008-5548.2006.05.008 .
J F Goodman . The decomposition of magnesium hydroxide in an electron microscope . Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences , 1958 . 247 ( 1250 ): 346 - 352 . DOI: 10.1098/rspa.1958.0188 http://doi.org/10.1098/rspa.1958.0188 .
P J Anderson , R F Horlock . Thermal decomposition of magnesium hydroxide . Transactions of the Faraday Society , 1962 . 58 1993 - 2004 . DOI: 10.1039/TF9625801993 http://doi.org/10.1039/TF9625801993 .
H Yoshioka , K Amita , G Hashizume . The nucleation-two dimensional interface growth equation for the thermal decomposition of Mg(OH) 2 . Netsu Sokutei , 1984 . 11 ( 3 ): 115 - 118 . DOI: 10.11311/jscta1974.11.115 http://doi.org/10.11311/jscta1974.11.115 .
宁 志强 , 翟 玉春 , 孙 立芹 , . 氢氧化镁分解动力学的研究 . 分子科学学报 , 2009 . 25 ( 1 ): 27 - 30 . DOI: 10.13563/j.cnki.jmolsci.2009.01.003.NING http://doi.org/10.13563/j.cnki.jmolsci.2009.01.003.NING .
Zhiqiang NING , Yuchun ZHAI , Liqin SUN , . Decomposition kinetics of magnesium hydroxide . Journal of Molecular Science , 2009 . 25 ( 1 ): 27 - 30 . DOI: 10.13563/j.cnki.jmolsci.2009.01.003 http://doi.org/10.13563/j.cnki.jmolsci.2009.01.003 .
李 歌 , 李 增和 , 马 鸿文 , . 热重分析法研究氢氧化镁纳米粉体的非等温分解动力学 . 化工学报 , 2014 . 65 ( 2 ): 576 - 582 . DOI: 10.3969/j.issn.0438-1157.2014.02.030.LI http://doi.org/10.3969/j.issn.0438-1157.2014.02.030.LI .
e G , Zenghe LI , Hongwen MA , . Thermal gravimetric analysis analysis of non-isothermal decomposition kinetics of magnesium hydroxide nanopowder . CIESC Journal , 2014 . 65 ( 2 ): 576 - 582 . DOI: 10.3969/j.issn.0438-1157.2014.02.030 http://doi.org/10.3969/j.issn.0438-1157.2014.02.030 .
苏 爱国 , 郑 裕芳 , 吴 奕初 , . 纳米SnO 2 和SnO 2 /SiO 2 材料的正电子湮没研究 . 核技术 , 1998 . 20 ( 3 ): 138 - 142 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800235392 .
Aiguo SU , Yufang ZHENG , Yichu WU , . Positron annihilation study on nano SnO 2 and SnO 2 /SiO 2 materials . Nuclear Techniques , 1998 . 20 ( 3 ): 138 - 142 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800235392 .
李 喜贵 , 魏 淑桃 , 张 瑞英 , . Sol-gel方法制备ZnO陶瓷材料的正电子寿命谱研究 . 核技术 , 2000 . 23 ( 6 ): 371 - 375 . DOI: 10.3321/j.issn:0253-3219.2000.06.005 http://doi.org/10.3321/j.issn:0253-3219.2000.06.005 .
Xigui LI , Shutao WEI , Ruiying ZHANG , . Positron lifetime spectroscopy study on ZnO ceramic materials prepared by sol-gel method . Nuclear Techniques , 2000 . 23 ( 6 ): 371 - 375 . DOI: 10.3321/j.issn:0253-3219.2000.06.005 http://doi.org/10.3321/j.issn:0253-3219.2000.06.005 .
W Yang , Z J Zhu , J J Shi , . Characterizations of the thermal decomposition of nano-magnesium hydroxide by positron annihilation lifetime spectroscopy . Powder Technology , 2017 . 311 206 - 212 . DOI: 10.1016/j.powtec.2017.01.059 http://doi.org/10.1016/j.powtec.2017.01.059 .
N K Nga , P T T Hong , Lam T Dai , . A facile synthesis of nanostructured magnesium oxide particles for enhanced adsorption performance in reactive blue 19 removal . Journal of Colloid and Interface Science , 2013 . 398 210 - 216 . DOI: 10.1016/j.jcis.2013.02.018 http://doi.org/10.1016/j.jcis.2013.02.018 .
V R Choudhary , V H Rane , M Y Pandit . Comparison of alkali metal promoted MgO catalysts for their surface acidity/basicity and catalytic activity/selectivity in the oxidative coupling of methane . Journal of Chemical Technology and Biotechnology , 1997 . 68 ( 2 ): 177 - 186 . DOI: 10.1002/(SICI)1097-4660(199702)68 http://doi.org/10.1002/(SICI)1097-4660(199702)68 .
V Ciupină , S Zamfirescu , G Prodan . Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images , Nanotechnology-Toxicological Issues and Environmental Safety and Environmental Safety. Springer Netherlands , 2007 . 231 - 237 . DOI: 10.1007/978-1-4020-6076-2_15 http://doi.org/10.1007/978-1-4020-6076-2_15 .
翟 学良 . 氢氧化镁热分解行为与机理研究 . 矿产综合利用 , 2000 . ( 3 ): 11 - 14 . DOI: 10.3969/j.issn.1000-6532.2000.03.004.ZHAI http://doi.org/10.3969/j.issn.1000-6532.2000.03.004.ZHAI .
Xueliang ZHAI . Thermal decomposition behavior and mechanism of magnesium hydroxide . Multipurpose Utilization of Mineral Resources , 2000 . ( 3 ): 11 - 14 . DOI: 10.3969/j.issn.1000-6532.2000.03.004 http://doi.org/10.3969/j.issn.1000-6532.2000.03.004 .
M J Puska , R M Nieminen . Defect spectroscopy with positrons:a general calculational method . Journal of Physics F:Metal Physics , 1983 . 13 ( 2 ): 333 DOI: 10.1088/0305-4608/13/2/009 http://doi.org/10.1088/0305-4608/13/2/009 .
W Brandt , R Paulin . Positronium diffusion in solids . Physical Review Letters , 1968 . 21 ( 4 ): 193 DOI: 10.1103/PhysRevLett.21.193 http://doi.org/10.1103/PhysRevLett.21.193 .
W Brandt , S Berko , W W Walker . Positronium decay in molecular substances . Physical Review , 1960 . 120 ( 4 ): 1289 DOI: 10.1103/PhysRev.121.1864.4 http://doi.org/10.1103/PhysRev.121.1864.4 .
S J Tao . Positronium annihilation in molecular substances . The Journal of Chemical Physics , 1972 . 56 ( 11 ): 5499 - 5510 . DOI: 10.1063/1.1677067 http://doi.org/10.1063/1.1677067 .
K Ito , H Nakanishi , Y Ujihira . Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1 nm in radius . The Journal of Physical Chemistry B , 1999 . 103 ( 21 ): 4555 - 4558 . DOI: 10.1021/jp9831841 http://doi.org/10.1021/jp9831841 .
H E Schaefer , R Würschum , R Birringer , . Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy . Physical Review B , 1988 . 38 ( 14 ): 9545 DOI: 10.1021/jp9831841 http://doi.org/10.1021/jp9831841 .
0
Views
125
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution