Zhiwei LU, Yongdong ZHANG, Lei LI, et al. Heat transfer performance of inert matrix dispersion pellet based on finite element analysis[J]. Nuclear techniques, 2018, 41(9): 090604
DOI:
Zhiwei LU, Yongdong ZHANG, Lei LI, et al. Heat transfer performance of inert matrix dispersion pellet based on finite element analysis[J]. Nuclear techniques, 2018, 41(9): 090604 DOI: 10.11889/j.0253-3219.2018.hjs.41.090604.
Heat transfer performance of inert matrix dispersion pellet based on finite element analysis
based on the fuel technology of high temperature gas cooled reactor
a type of accident tolerant fuel
takes inert material as matrix
has high thermal conductivity compared to UO
2
.
Purpose
2
In this study
effect of temperature
burnup
thermal barrier between tristructural isotropic (TRISO) and matrix on the effective thermal conductivity (ETC) of the IMDP is studied by finite element analysis (FEA) method.
Methods
2
A FEA model is developed by ABAQUS combined its secondary development function.
Results
2
The ETC of IMDP decreases as temperature and burnup increases. Under normal operation condition
the centerline temperature of IMDP is 400℃ or more lower than UO
2
. When the thermal barrier between TRISO and matrix increases from 0 to 4×10
-4
m
2
·℃·W
-1
the ETC of IMDP decreases approximately 16% and 19% respectively at beginning of life (BOL) and middle of life (MOL).
Conclusions
2
IMDP has superior heat transfer performance than UO
2
. Thermal barrier between TRISO and matrix has more significant impact on BOL IMDP than MOL IMDP. Thermal barrier between 0 to 4×10
-4
m
2
·℃·W
-1
has more significant impact on ETC of IMDP than other values.
关键词
Keywords
references
S J Zinkle , K A Terrani , J C Gehin , . Accident tolerant fuels for LWRs:a perspective . Journal of Nuclear Materials , 2014 . 448 ( 1-3 ): 374 - 379 . DOI: 10.1016/j.jnucmat.2013.12.005 http://doi.org/10.1016/j.jnucmat.2013.12.005 .
Y Lee , N Z Cho . Three-dimensional single-channel thermal analysis of fully ceramic microencapsulated fuel via two-temperature homogenized model . Annals of Nuclear Energy , 2014 . 71 254 - 271 . DOI: 10.1016/j.anucene.2014.03.039 http://doi.org/10.1016/j.anucene.2014.03.039 .
Y Lee , N Z Cho . Steady and transient state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal conductivity model . Annals of Nuclear Energy , 2015 . 76 283 - 296 . DOI: 10.1016/j.anucene.2014.09.027 http://doi.org/10.1016/j.anucene.2014.09.027 .
X L Wu , W Li , Y Wang , . Preliminary safety analysis of the PWR with accident tolerant fuels during severe accident conditions . Annals of Nuclear Energy , 2015 . 80 1 - 13 . DOI: 10.1016/j.anucene.2015.02.040 http://doi.org/10.1016/j.anucene.2015.02.040 .
H G Lee , D Kim , S J Lee , . Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites . Nuclear Engineering and Design , 2017 . 311 9 - 15 . DOI: 10.1016/j.nucengdes.2016.11.005 http://doi.org/10.1016/j.nucengdes.2016.11.005 .
H S Kou , K T Lu , C C Yu . Effective thermal conductivity of composite material with spherical inclusions in orthorhombic structure . Computer & Structures , 1994 . 53 ( 3 ): 569 - 577 . http://cn.bing.com/academic/profile?id=ad1a9ec452994e611045ea82279d13b0&encoded=0&v=paper_preview&mkt=zh-cn .
J C Maxwell . A treatise on electricity and magnetism , : Cambridge Cambridge University Press , 2010 . 111 .
J K Carson , S J Lovatt , D J Tanner , . Thermal conductivity bounds for isotropic, porous materials . International Journal of Heat and Mass Transfer , 2005 . 48 ( 11 ): 2150 - 2158 . DOI: 10.1016/j.ijheatmasstransfer.2004.12.032 http://doi.org/10.1016/j.ijheatmasstransfer.2004.12.032 .
E E Gonzo . Estimating correlations for the effective thermal conductivity of granular materials . Chemical Engineering Journal , 2002 . 90 ( 3 ): 299 - 302 . DOI: 10.1016/S1385-8947(02)00121-3 http://doi.org/10.1016/S1385-8947(02)00121-3 .
Stainsby R, Grief A, Worsley M, et al . Investigation of local heat transfer phenomena in a pebble bed HTGR core (NR001/RP/002R01)[R]. United Kingdom: Amec Foster Wheeler-Nuclear, 2009.
K A Terrani , L L Snead , J C Gehin . Microencapsulated fuel technology for commercial light water and advanced reactor application . Journal of Nuclear Materials , 2012 . 427 ( 1-3 ): 209 - 224 . DOI: 10.1016/j.jnucmat.2012.05.021 http://doi.org/10.1016/j.jnucmat.2012.05.021 .
Powers J J. Fully ceramic microencapsulated (FCM) replacement fuel for LWRs (TM-2013/173)[R]. USA: Oak Ridge National Laboratory, 2013.
J S Cheon , B H Lee , Y H Koo , . Evaluation of a pellet-clad mechanical interaction in mixed oxide fuels during power transients by using axisymmetric finite element modeling . Nuclear Engineering and Design , 2004 . 231 ( 1 ): 39 - 50 . DOI: 10.1016/j.nucengdes.2004.02.009 http://doi.org/10.1016/j.nucengdes.2004.02.009 .
MacDonald P E, Thompson L B. MATPRO: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior[R]. Version 09. USA: Idaho National Engineering Laboratory, 1976.