浏览全部资源
扫码关注微信
1.中国科学院上海应用物理研究所 嘉定园区 上海 201800
2.中国科学院大学 北京 100049
[ "鄂彦志, 男, 1989年出生, 2012年毕业于清华大学, 现为博士研究生, 研究领域为反应堆热工水力", "E Yanzhi, male, born in 1989, graduated from Tsinghua University in 2012, doctoral student, focusing on reactor thermal-hydraulics" ]
郭威, E-mail:guowei@sinap.ac.cn GUO Wei, E-mail:guowei@sinap.ac.cn
收稿日期:2017-03-07,
修回日期:2017-04-20,
纸质出版日期:2017-07-10
移动端阅览
鄂彦志, 邹杨, 郭威, 等. GPU加速的球床式氟盐冷却高温堆堆芯热工水力程序研发[J]. 核技术, 2017,40(7):070603
Yanzhi E, Yang ZOU, Wei GUO, et al. Development of a GPU-accelerated thermal hydraulic code for pebble-bed fluoride-salt cooled high temperature reactor core[J]. Nuclear techniques, 2017, 40(7): 070603
鄂彦志, 邹杨, 郭威, 等. GPU加速的球床式氟盐冷却高温堆堆芯热工水力程序研发[J]. 核技术, 2017,40(7):070603 DOI: 10.11889/j.0253-3219.2017.hjs.40.070603.
Yanzhi E, Yang ZOU, Wei GUO, et al. Development of a GPU-accelerated thermal hydraulic code for pebble-bed fluoride-salt cooled high temperature reactor core[J]. Nuclear techniques, 2017, 40(7): 070603 DOI: 10.11889/j.0253-3219.2017.hjs.40.070603.
球床式氟盐冷却高温堆(Pebble Bed Fluoride-salt Cooled High Temperature Reactor
PB-FHR)是一种先进的第四代反应堆。三维堆芯热工水力程序能够模拟具有复杂空间效应的工况,但计算耗时较高。图形处理器(Graphics Processing Unit
GPU)具有大量计算单元,可有效提高程序的计算速度。本文研发了GPU加速的PB-FHR堆芯热工水力程序(GPU-accelerated Thermal Hydraulic Code
GATH),采用非热平衡多孔介质模型建立堆芯物理模型,研究并实现了GPU高速求解算法。对PB-FHR的堆芯模型进行了热工水力分析,与商用计算流体力学软件ANSYS CFX的计算结果进行了对比,验证了程序的正确性。GPU加速性能分析的结果表明,程序整体的加速比率可达8.39倍,证明所研发的GPU求解算法能有效提升堆芯热工水力分析的计算效率。
Background
2
Pebble bed fluoride-salt cooled high temperature reactor (PB-FHR) is a kind of Generation IV reactor. Three-dimensional thermal hydraulic code of reactor core is expected to simulate cases with complex spatial effect for PB-FHR but takes very heavy time-consuming. Graphics processing unit (GPU) contains numerous computing cores
thus can be used to efficiently accelerate numerical calculation if applied properly.
Purpose
2
This study aims to develop a GPU-accelerated thermal-hydraulic code (GATH) for PB-FHR core.
Methods
2
Thermal non-equilibrium porous media theory is adopted to build the reactor core physical model. Efficient iterative algorithms are researched and implemented on GPU. A PB-FHR core model is built for thermal hydraulic analysis with GATH. Simulation results are compared with ANSYS CFX software to verify GATH code and the GPU acceleration performance is analyzed.
Results
2
The results between GATH and CFX are in good agreement. The speedup ratio of GATH can reach 8.39 times.
Conclusion
2
2
The physical model and calculation method adopted in GATH code are right. The GPU accelerating methods proposed in this paper can efficiently accelerate thermal hydraulic simulation.
C W Forsberg , P F Peterson , P S Pickard . Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity . Nuclear Technology , 2003 . 144 ( 3 ): 289 - 302 . DOI: 10.13182/NT03-1 http://doi.org/10.13182/NT03-1 .
S De Zwaan , B Boer , D Lathouwers , . Static design of a liquid-salt-cooled pebble bed reactor (LSPBR) . Annals of Nuclear Energy , 2007 . 34 ( 1 ): 83 - 92 . DOI: 10.1016/j.anucene.2006.11.008 http://doi.org/10.1016/j.anucene.2006.11.008 .
Andreades A T C, Choi J K, Chong A Y K, et al. Technical description of the'Mark 1'pebble-bed fluoride-salt-cooled high-temperature reactor (PB-FHR) power plant[D]. Berkeley: University of California, 2014.
J Serp , M Allibert , O Beneš , . The molten salt reactor (MSR) in generation IV: overview and perspectives . Progress in Nuclear Energy , 2014 . 77 308 - 319 . DOI: 10.1016/j.pnucene.2014.02.014 http://doi.org/10.1016/j.pnucene.2014.02.014 .
Griveau A. Modeling and transient analysis for the pebble bed advanced high temperature reactor (PB-AHTR)[D]. Berkeley: Department of Nuclear Engineering, University of California, 2007.
牛 强 , 宋 士雄 , 魏 泉 , . 熔盐冷却球床堆热通道热工水力特性数值分析 . 核技术 , 2014 . 37 ( 7 ): 070602 DOI: 10.11889/j.0253-3219.2014.hjs.37.070602 http://doi.org/10.11889/j.0253-3219.2014.hjs.37.070602 http://www.j.sinap.ac.cn/hejishu/CN/abstract/abstract239.shtml .
Qiang NIU , Shixiong SONG , Quan WEI , . Thermal-hydraulics numerical analyses of pebble bed advanced high temperature reactor hot channel . Nuclear Techniques , 2014 . 37 ( 7 ): 070602 http://www.j.sinap.ac.cn/hejishu/CN/abstract/abstract239.shtml .
C Wang , Y Xiao , J Zhou , . Computational fluid dynamics analysis of a fluoride salt-cooled pebble-bed test reactor . Nuclearence & Engineering , 2014 . 178 ( 1 ): 86 - 102 . DOI: 10.13182/NSE13-60 http://doi.org/10.13182/NSE13-60 .
J Ge , C Wang , Y Xiao , . Thermal-hydraulic analysis of a fluoride-salt-cooled pebble-bed reactor with CFD methodology . Progress in Nuclear Energy , 2016 . 91 83 - 96 . DOI: 10.1016/j.pnucene.2016.01.011 http://doi.org/10.1016/j.pnucene.2016.01.011 .
D Kirk , W Hwu . Programming massively parallel processors , : Boston Morgan Kaufmann , 2010 .
Bailey P, Myre J, Walsh S D C, et al. Accelerating lattice boltzmann fluid flow simulations using graphics processors[C]. Proceedings of the International Conference on Parallel Processing, International Conference on Cultural Policy, Vienna, Austria, 2009: 550-557.
W R Boyd , K Smith , B Forget , . A massively parallel method of characteristic neutral particle transport code for GPUs , : La Grange Park, United States American Nuclear Society , 2013 .
M J De Lemos , M H Pedras . Recent mathematical models for turbulent flow in saturated rigid porous media . Journal of Fluids Engineering , 2001 . 123 ( 4 ): 935 - 940 . DOI: 10.1115/1.1413243 http://doi.org/10.1115/1.1413243 .
陶 文铨 . 数值传热学 , : 西安 西安交通大学出版社 , 2003 .
Wenquan TAO . Numerical heat transfer , : Xi'an Xi'an Jiaotong University Press , 2003 .
A Nakayama , F Kuwahara . A macroscopic turbulence model for flow in a porous medium . Journal of Fluids Engineering , 1999 . 121 ( 2 ): 427 - 433 . DOI: 10.1115/1.2822227 http://doi.org/10.1115/1.2822227 .
S Ergun . Fluid flow through packed columns . Chemical Engineering Progress , 1952 . 48 ( 2 ): 89 - 94 . http://ci.nii.ac.jp/naid/10003393451 .
M Quintard , M Kaviany , S Whitaker . Two-medium treatment of heat transfer in porous media: numerical results for effective properties . Advances in Water Resources , 1997 . 20 ( 2 ): 77 - 94 . DOI: 10.1016/S0309-1708(96)00024-3 http://doi.org/10.1016/S0309-1708(96)00024-3 .
Kuwahara F, Nakayama A. Numerical modelling of non-Darcy convective flow in a porous medium[C]. Heat Transfer Conference, Kyongju, Korea, 1998: 411-416.
N Wakao , S Kaguei , T Funazkri . Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of nusselt numbers . Chemical Engineering Science , 1979 . 34 ( 3 ): 325 - 336 . DOI: 10.1016/0009-2509(79)85064-2 http://doi.org/10.1016/0009-2509(79)85064-2 .
B Guo , A Yu , B Wright , . Simulation of turbulent flow in a packed bed . Chemical Engineering & Technology , 2006 . 29 ( 5 ): 596 - 603 . DOI: 10.1002/ceat.200500292 http://doi.org/10.1002/ceat.200500292 .
Kuzavkov N. Heat transport and afterheat removal for gas cooled reactors under accident conditions[D]. Vienna: International Atomic Energy Agency, 2000.
M R Hestenes , E Stiefel . Methods of conjugate gradients for solving linear systems . Journal of Research of the National Bureau of Standards , 1952 . 49 ( 6 ): 409 - 436 . DOI: 10.6028/jres.049.044 http://doi.org/10.6028/jres.049.044 .
H A V D Vorst . Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J . Siam Journal on Scientific & Statistical Computing , 1992 . 13 ( 2 ): 631 - 644 . DOI: 10.1137/0913035 http://doi.org/10.1137/0913035 .
J F Zhang , L Zhang . Efficient CUDA polynomial preconditioned conjugate gradient solver for finite element computation of elasticity problems . Mathematical Problems in Engineering , 2013 . ( 6 ): 1 - 12 . DOI: 10.1155/2013/398438 http://doi.org/10.1155/2013/398438 .
K Stüben . A review of algebraic multigrid . Journal of Computational & Applied Mathematics , 2001 . 128 ( 1-2 ): 281 - 309 . DOI: 10.1016/S0377-0427(00)00516-1 http://doi.org/10.1016/S0377-0427(00)00516-1 .
Bardet P, An J Y, Franklin J T, et al. The pebble recirculation experiment (PREX) for the AHTR[C]. Proceedings of the Advanced Nuclear Fuel Cycles and Systems (GLOBAL 2007), La Grange Park: American Nuclear Society, 2007: 845-851.
0
浏览量
22
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构