浏览全部资源
扫码关注微信
上海科技大学 大科学中心 上海 201210
王震,男,1979年出生,2012于德国雅德应用科技大学获硕士学位,研究领域为机械工程
刘芳, E-mail: liufang@shanghaitech.edu.cn
收稿日期:2024-06-17,
修回日期:2024-09-23,
纸质出版日期:2025-04-15
移动端阅览
王震,佟亚军,刘芳.高热负载X射线自由电子激光复合折射透镜的热分析[J].核技术,2025,48(04):040201.
WANG Zhen,TONG Yajun,LIU Fang.Thermal analysis of compound refractive lenses for high heat load X-ray free-electron-laser[J].NUCLEAR TECHNIQUES,2025,48(04):040201.
王震,佟亚军,刘芳.高热负载X射线自由电子激光复合折射透镜的热分析[J].核技术,2025,48(04):040201. DOI: 10.11889/j.0253-3219.2025.hjs.48.240172. CSTR: 32193.14.hjs.CN31-1342/TL.2025.48.240172.
WANG Zhen,TONG Yajun,LIU Fang.Thermal analysis of compound refractive lenses for high heat load X-ray free-electron-laser[J].NUCLEAR TECHNIQUES,2025,48(04):040201. DOI: 10.11889/j.0253-3219.2025.hjs.48.240172. CSTR: 32193.14.hjs.CN31-1342/TL.2025.48.240172.
上海硬X射线自由电子激光装置(Shanghai HIgh-repetition-rate XFEL aNd Extreme Light Facility,SHINE)具有高亮度、全相干性和高重复频率等特点。对于高重频硬X射线进行聚焦时,复合折射透镜(Compound Refractive Lens,CRL)需要承受高热负载,甚至会出现由高热应力引起的光学器件性能失效问题。为了确保CRL聚焦镜的热应力在许可限定范围内和CRL聚焦镜在高重频X射线下保持良好的光学性能,采用有限元方法(Finite Element Method,FEM)进行热分析,优化了X射线的最大许可重频,以降低CRL聚焦镜出现高热应力的风险,从而有效预防其光学性能的失效。通过优化设计,当光子能量为7 keV时,CRL聚焦镜最大热应力降低了93%,从1 008 MPa降低至74 MPa,有效预防了CRL聚焦镜高热应力问题。在实现X射线工作重复频率最大化和控制其热应力在许可范围内的同时,也确保了CRL聚焦镜在高重复频率下保持其良好的光学性能。
Background
2
The Shanghai High-repetition-rate XFEL and Extreme Light Facility (SHINE) is characterized by high brightness
full coherence
and high repetition rates. For focusing high-repetition-rate hard X-rays
compound refractive lenses (CRL) must withstand significant heat loads
which can potentially lead to optical performance failure due to high thermal stress.
Purpose
2
This study aims to optimize the maximum allowable repetition rate of X-ray beams while maintaining thermal stress within permissible limits to ensure reliable optical performance of CRLs under high-repetition-rate operation.
Methods
2
Firstly
a finite element method (FEM) was employed to perform thermal-structural coupled analysis of beryllium CRLs with various internal spherical radii (0.3 mm
1.0 mm
2.0 mm
and 5.8 mm) under different photon energies (5 keV
7 keV
and 15 keV). Then
the maximum thermal stress and temperature distributions were systematically evaluated under the initial 1 MHz repetition rate condition. Finally
the repetition rates were optimized to keep the maximum thermal stress below the permissible threshold of 120 MPa (50% of beryllium's yield strength)
with special focus on the central region of the lens where stress concentration occurs.
Results
2
Analysis results show that CRLs with internal radius
R
=0.3 mm experience a maximum thermal stress of 1 008 MPa at 7 keV photon energy at 1 MHz repetition rate
far exceeding the permissible limit. After optimization
the maximum thermal stress is reduced by 93% to 74 MPa by lowering the repetition rate to 100 kHz. The maximum temperature decreases from 201 °C to 36.6 °C
an 82% reduction. For larger radius CRLs (
R
=5.8 mm)
the optimized repetition rate could be increased to 500 kHz for 7 keV X-rays while maintaining thermal stress below the threshold.
Conclusions
2
By optimizing the repetition rate according to CRL geometry and beam energy
thermal stress can be effectively controlled within safe limits. Increasing the internal spherical radius of CRLs from 0.3 mm to 5.8 mm allows for higher repetition rates (from 100 kHz to 500 kHz for 7 keV photons)
thereby enhancing operational capabilities while ensuring reliable optical performance and structural integrity.
Huang Z R , Kim K J . Review of X-ray free-electron laser theory [J ] . Physical Review Special Topics - Accelerators and Beams , 2007 , 10 ( 3 ): 034801 . DOI: 10.1103/physrevstab.10.034801 http://dx.doi.org/10.1103/physrevstab.10.034801 .
Zhu Z Y , Zhao Z T , Wang D , et al . SCLF:an 8-GeV CW SCRF Linac-based X-ray FEL facility in Shanghai [C ] . Santa Fe, NM, USA : FEL , 2017 : 182 ‒ 184 . DOI: 10.18429/JACOW-FEL2017-MOP055 http://dx.doi.org/10.18429/JACOW-FEL2017-MOP055 .
Liu T , Huang N S , Yang H X , et al . Status and future of the soft X-ray free-electron laserbeamline at the SHINE [J ] . Frontiers in Physics , 2023 , 11 : 72368 . DOI: 10.3389/fphy.2023.1172368 http://dx.doi.org/10.3389/fphy.2023.1172368 .
Eriksson M , van der Veen J F , Quitmann C . Diffraction-limited storage rings–a window to the science of tomorrow [J ] . Journal of Synchrotron Radiation , 2014 , 21 ( 5 ): 837 – 842 . DOI: 10.1107/s1600577514019286 http://dx.doi.org/10.1107/s1600577514019286 .
Hettel R . DLSR design and plans: an international overview [J ] . Journal of Synchrotron Radiation , 2014 , 21 ( 5 ): 843 – 855 . DOI: 10.1107/s1600577514011515 http://dx.doi.org/10.1107/s1600577514011515 .
Emma P , Akre R , Arthur J , et al . First lasing and operation of an ångstrom-wavelength free-electron laser [J ] . Nature Photonics , 2010 , 4 ( 9 ): 641 – 647 . DOI: 10.1038/nphoton.2010.176 http://dx.doi.org/10.1038/nphoton.2010.176 .
Ishikawa T , Aoyagi H , Asaka T , et al . A compact X-ray free-electron laser emitting in the sub-angstrom region [J ] . Nature Photonics 2012 , 6 : 540 – 544 . DOI: 10.1038/NPHOTON.2012.141 http://dx.doi.org/10.1038/NPHOTON.2012.141 .
Kim K J , Huang Z R , Lindberg R . Synchrotron radiation and free-electron lasers [M ] . Cambridge, UK : Cambridge University Press , 2017 . DOI: 10.1017/9781316677377 http://dx.doi.org/10.1017/9781316677377 .
Pellegrini C , Marinelli A , Reiche S . The physics of X-ray free-electron lasers [J ] . Reviews of Modern Physics , 2016 , 88 : 015006 . DOI: 10.1103/revmodphys.88.015006 http://dx.doi.org/10.1103/revmodphys.88.015006 .
Snigirev A , Kohn V , Snigireva I , et al . A compound refractive lens for focusing high-energy X-rays [J ] . Nature , 1996 , 384 ( 6604 ): 49 – 51 . DOI: 10.1038/384049a0 http://dx.doi.org/10.1038/384049a0 .
Filseth S B , Elleaume P , Kiocke T , et al . Refractive lens for high-energy X-rays focusing [C ] . SPlE Proceedings , 1997 , 3151 : l64 – l70 .
钟长游 , 汪启胜 , 刘科 , 等 . BL17U短波长X射线聚焦方案优化 [J ] . 核技术 , 2018 , 41 ( 5 ): 050102 . DOI: 10.11889/j.0253-3219.2018.hjs.41.050102 http://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.050102 .
ZHONG Changyou , WANG Qisheng , LIU Ke , et al . Optimized focusing plan for short X-ray wavelengths mode at BL17U in SSRF [J ] . Nuclear Techniques , 2018 , 41 ( 5 ): 050102 . DOI: 10.11889/j.0253-3219.2018.hjs.41. 050102 http://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.050102 .
Kujala N , Makita M , Liu J , et al . Characterizing transmissive diamond gratings as beam splitters for the hard X-ray single-shot spectrometer of the European XFEL [J ] . Journal of Synchrotron Radiation , 2019 , 26 ( 3 ): 708 – 713 . DOI: 10.1107/s1600577519003382 http://dx.doi.org/10.1107/s1600577519003382 .
Siewert F , Löchel B , Buchheim J , et al . Gratings for synchrotron and FEL beamlines: aproject for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin [J ] . Journal of Synchrotron Radiation , 2018 , 25 ( 1 ): 91 – 99 . DOI: 10.1107/s1600577517015600 http://dx.doi.org/10.1107/s1600577517015600 .
Snigirev A , Kohn V , Snigireva I , et al . Focusing high-energy X-rays by compound refractive lenses [J ] . Applied Optics , 1998 , 37 ( 4 ): 653 . DOI: 10.1364/ao.37.000653 http://dx.doi.org/10.1364/ao.37.000653 .
Elleaume P . Optimization of compound refractive lenses for X-rays [J ] . Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 1998 , 412 : 483 ‒ 506 . 10.1016/s0168-9002(98)00474-4 http://dx.doi.org/10.1016/s0168-9002(98)00474-4
RXOPTICS GmbH . Refractive optical devices[ED/OL] . https://www.rxoptics.de https://www.rxoptics.de .
Zhang L , Snigirev A A , Snigireva I I , et al . Thermo-mechanical analysis and design optimization of front-end compound refractive lens [C ] . Design and Microfabrication of Novel X-ray Optics II, SPIE Proceedings , 2004 . DOI: 10.1117/12.568105 http://dx.doi.org/10.1117/12.568105 .
Wang Y Z , Dong X H , Hu J . Feasibility analysis of sapphire compound refractive lenses for advanced X-ray light sources [J ] . Frontiers in Physics , 2022 , 10 : 908380 . DOI: 10.3389/fphy.2022.908380 http://dx.doi.org/10.3389/fphy.2022.908380 .
Ansys . Ansys fluent, fluid simulation software[ED/OL] . https://www.ansys.com https://www.ansys.com .
AZoM . Materials science community[ED/OL] . https://www.azom.com https://www.azom.com .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构