1.苏州热工研究院有限公司 苏州 215004
2.中国科学院上海应用物理研究所 上海 201800
3.西南石油大学 新能源与材料学院 成都 610500
4.国家核电厂安全及可靠性工程技术研究中心 苏州 215004
YING Hong, male, born in 1987, graduated from University of Science and Technology of China with a master's degree in 2011, focusing on radiation detective and protective
WEN Ali, E-mail: wenali@sinap.ac.cn
REN Cuilan, E-mail: rencuilan@sinap.ac.cn
扫 描 看 全 文
应红,温阿利,周岁茹等.金属镍、铁和钨初级辐照损伤演化的分子动力学研究[J].核技术,2023,46(12):120301.
YING Hong,WEN Ali,ZHOU Suiru,et al.Molecular dynamics analysis of primary radiation damage evolution in nickel, iron, and tungsten[J]. NUCLEAR TECHNIQUES,2023,46(12):120301.
应红,温阿利,周岁茹等.金属镍、铁和钨初级辐照损伤演化的分子动力学研究[J].核技术,2023,46(12):120301. DOI: 10.11889/j.0253-3219.2023.hjs.46.120301.
YING Hong,WEN Ali,ZHOU Suiru,et al.Molecular dynamics analysis of primary radiation damage evolution in nickel, iron, and tungsten[J]. NUCLEAR TECHNIQUES,2023,46(12):120301. DOI: 10.11889/j.0253-3219.2023.hjs.46.120301.
镍、铁和钨基合金常被用来作为反应堆的候选结构材料,在反应堆中面临中子辐照的严苛服役环境。本文采用分子动力学方法研究了金属镍、铁、钨三种金属材料的辐照级联过程,获得材料在不同温度(300⁓500 K)下、不同初级碰撞原子(Primary Knock-on Atom,PKA)能量(<20 keV)沿不同晶格方向(<135>、<122>和<100>)入射的辐照级联损伤过程。结果表明:金属镍和铁的稳态辐照缺陷数相当,当PKA能量较低(<5 keV)时,金属镍的稳态缺陷数比金属铁略少;而当PKA能量较高(>5 keV)时,金属镍的稳态缺陷数逐渐超过铁;在相同辐照条件下,金属钨的稳态辐照缺陷数最少,表现出更为良好的抗辐照性能。通过分析三种金属辐照级联过程中不同阶段的缺陷复合率及缺陷存活率,进一步理解其耐辐照损伤能力的差异。相关计算结果为理解不同金属的辐照性能提供数据支撑,作为金属初级辐照损伤数据集,为更大尺度的速率理论和团簇动力学等模拟材料辐照效应提供微观缺陷结构和参数。
Background,2,Nickel-, iron- and tungsten-based alloys are commonly used as structural materials of reactors. During their operational life, these alloys undergo intense neutron irradiation.,Purpose,2,This study aims to analyze the post-irradiation defect evolution and its mechanisms in these materials for comprehending the effects of irradiation on them.,Methods,2,The displacement cascades in nickel, iron, and tungsten were examined at various temperatures (300⁓500 K), primary knock-on atom (PKA) energies (<20 keV), and directions (<135>, <122> and <100>) by using molecular dynamics (MD) simulations. Firstly, the model was initially relaxed at each specified temperature under a canonical ensemble for 10 ps, applying periodic boundary conditions in every direction. Then, an atom was randomly chosen as a PKA and assigned kinetic energy to initiate the cascade collision simulation in the micro-canonical ensemble. Finally, the Open Visualization Tool package was employed for visualization and data analysis of the irradiation cascade processes.,Results,2,The simulation results reveal that nickel and iron exhibit similar steady-state defects. At lower PKA energies (<5 keV), nickel exhibits marginally fewer defects than iron. However, as the PKA energy surpasses 5 keV, the number of defects in nickel becomes slightly more than that in iron. Furthermore, under identical irradiation conditions, tungsten demonstrates superior radiation resistance, with fewer steady-state defects when compared with both nickel and iron.,Conclusions,2,The defect evolution during various cascade displacement phases in three metals and their defect recombination rates are crucial to understanding the disparities in radiation damage resilience. The derived results help to comprehend the radiation characteristics of these metals. Additionally, the primary radiation damage dataset compiled for these metals lays a foundation for further larger-scale simulations of their radiation attributes using rate theory or cluster dynamics methods.
镍铁钨中子辐照初级辐照损伤分子动力学
NickelIronTungstenNeutron irradiationPrimary radiation damageMolecular dynamics
Wang C X, Liu Z L, Chen W, et al. Effect of metallic ion products on the corrosion of GH3535 alloy in a eutectic (Li, Na, K) F melt[J]. Journal of Materials Research and Technology, 2023, 22: 1014–1025. DOI: 10.1016/j.jmrt.2022.11.174http://dx.doi.org/10.1016/j.jmrt.2022.11.174.
Vas J V, Pan J Q, Wang N L, et al. Plasma processed tungsten for fusion reactor first-wall material[J]. Journal of Materials Science, 2021, 56(17): 10494–10509. DOI: 10.1007/s10853-021-05917-yhttp://dx.doi.org/10.1007/s10853-021-05917-y.
卢洪伟, 倪志娇, 查学军. 不锈钢和钨材料对东方超环(EAST)装置硬X射线诊断系统的影响[J]. 辐射研究与辐射工艺学报, 2021, 39(4): 040701. DOI: 10.11889/j.1000-3436.2021.rrj.39.040701http://dx.doi.org/10.11889/j.1000-3436.2021.rrj.39.040701.
LU Hongwei, NI Zhijiao, ZHA Xuejun. Effects of stainless steel and tungsten on a hard X-ray diagnostics system in the Experimental Advanced Superconducting Tokamak (EAST)[J]. Journal of Radiation Research and Radiation Processing, 2021, 39(4): 040701. DOI: 10.11889/j.1000-3436.2021.rrj.39.040701http://dx.doi.org/10.11889/j.1000-3436.2021.rrj.39.040701.
刘泽, 唐琳, 张亚飞, 等. W/316L不锈钢第一壁材料热应力的模拟研究[J]. 核技术, 2022, 45(7): 070601. DOI: 10.11889/j.0253-3219.2022.hjs.45.070601http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.070601.
LIU Ze, TANG Lin, ZHANG Yafei, et al. Simulation study on the thermal stress of W/316L stainless steel first wall material[J]. Nuclear Techniques, 2022, 45(7): 070601. DOI: 10.11889/j.0253-3219.2022.hjs.45.070601http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.070601.
Zinkle S J, Busby J T. Structural materials for fission & fusion energy[J]. Materials Today, 2009, 12(11): 12–19. DOI: 10.1016/S1369-7021(09)70294-9http://dx.doi.org/10.1016/S1369-7021(09)70294-9.
Li Y G, Yang Y, Short M P, et al. IM3D: a parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry[J]. Scientific Reports, 2015, 5: 18130. DOI: 10.1038/srep18130http://dx.doi.org/10.1038/srep18130.
Ziegler J F, Biersack J P, Ziegler M D. SRIM: the stopping and range of ions in matter[M]. Ion Implantation Press, 2008.
Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2013, 310: 75–80. DOI: 10.1016/j.nimb.2013.05.008http://dx.doi.org/10.1016/j.nimb.2013.05.008.
Was G S. Fundamentals of radiation materials science[M]. New York, NY: Springer New York, 2017. DOI: 10.1007/978-1-4939-3438-6http://dx.doi.org/10.1007/978-1-4939-3438-6.
Chen X Y, Wen A L, Ren C L, et al. Theoretical prediction of radiation-enhanced diffusion behavior in nickel under self-ion irradiation[J]. Nuclear Science and Techniques, 2020, 31(9): 95. DOI: 10.1007/s41365-020-00791-whttp://dx.doi.org/10.1007/s41365-020-00791-w.
吕广宏. 聚变堆金属材料中子辐照多尺度计算模拟[J]. 原子能科学技术, 2021, 55(1): 1–7. DOI: 10.7538/yzk.2020.youxian.0509http://dx.doi.org/10.7538/yzk.2020.youxian.0509.
LYU Guanghong. Multiscale modeling and simulation of fusion metallic material under neutron irradiation[J]. Atomic Energy Science and Technology, 2021, 55(1): 1–7. DOI: 10.7538/yzk.2020.youxian.0509http://dx.doi.org/10.7538/yzk.2020.youxian.0509.
Stoller R E. Primary radiation damage formation[M]. Comprehensive Nuclear Materials. Amsterdam: Elsevier, 2012: 293–332. DOI: 10.1016/b978-0-08-056033-5.00027-6http://dx.doi.org/10.1016/b978-0-08-056033-5.00027-6.
Kwon J, Kim W, Hong J H. Comparison of the primary damage states in iron and nickel by molecular dynamics simulations[J]. Radiation Effects and Defects in Solids, 2006, 161(4): 207–218. DOI: 10.1080/10420150600704013http://dx.doi.org/10.1080/10420150600704013.
Bacon D J, Gao F, Osetsky Y N. The primary damage state in fcc, BCC and HCP metals as seen in molecular dynamics simulations[J]. Journal of Nuclear Materials, 2000, 276(1–3): 1–12. DOI: 10.1016/S0022-3115(99)00165-8http://dx.doi.org/10.1016/S0022-3115(99)00165-8.
Setyawan W, Nandipati G, Roche K J, et al. Displacement cascades and defects annealing in tungsten, Part I: defect database from molecular dynamics simulations[J]. Journal of Nuclear Materials, 2015, 462: 329–337. DOI: 10.1016/j.jnucmat.2014.12.056http://dx.doi.org/10.1016/j.jnucmat.2014.12.056.
Warrier M, Bhardwaj U, Hemani H, et al. Statistical study of defects caused by primary knock-on atoms in FCC Cu and BCC W using molecular dynamics[J]. Journal of Nuclear Materials, 2015, 467: 457–464. DOI: 10.1016/j.jnucmat.2015.09.025http://dx.doi.org/10.1016/j.jnucmat.2015.09.025.
Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1–19. DOI: 10.1006/jcph.1995. 1039http://dx.doi.org/10.1006/jcph.1995.1039.
Béland L K, Tamm A, Mu S, et al. Accurate classical short-range forces for the study of collision cascades in Fe-Ni-Cr[J]. Computer Physics Communications, 2017, 219: 11–19. DOI: 10.1016/j.cpc.2017.05.001http://dx.doi.org/10.1016/j.cpc.2017.05.001.
Bonny G, Terentyev D, Pasianot R C, et al. Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19(8): 085008. DOI: 10.1088/0965-0393/19/8/085008http://dx.doi.org/10.1088/0965-0393/19/8/085008.
Byggmästar J, Granberg F, Nordlund K. Effects of the short-range repulsive potential on cascade damage in iron[J]. Journal of Nuclear Materials, 2018, 508: 530–539. DOI: 10.1016/j.jnucmat.2018.06.005http://dx.doi.org/10.1016/j.jnucmat.2018.06.005.
Chen Y C, Li Y H, Gao N, et al. New interatomic potentials of W, Re and W-Re alloy for radiation defects[J]. Journal of Nuclear Materials, 2018, 502: 141–153. DOI: 10.1016/j.jnucmat.2018.01.059http://dx.doi.org/10.1016/j.jnucmat.2018.01.059.
Zhang W, Han H, Dai J X, et al. Simulation of migration and coalescence of helium bubbles in nickel[J]. Journal of Nuclear Materials, 2019, 518: 48–53. DOI: 10.1016/j.jnucmat.2019.02.023http://dx.doi.org/10.1016/j.jnucmat.2019.02.023.
Owen E A, Yates E L. X-ray measurement of the thermal expansion of pure nickel[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1936, 21(142): 809–819. DOI: 10.1080/14786443608561628http://dx.doi.org/10.1080/14786443608561628.
Goldschmidt H J. Advanced X-ray analysis[M]. NY: Plenum Press, 1962. 10.1007/978-1-4684-7606-4_19http://dx.doi.org/10.1007/978-1-4684-7606-4_19
Dutta B N, Dayal B. Lattice constants and thermal expansion of palladium and tungsten up to 878 ℃ by X-ray method[J]. Physica Status Solidi (B), 1963, 3(12): 2253–2259. DOI: 10.1002/pssb.19630031207http://dx.doi.org/10.1002/pssb.19630031207.
Fu J, Chen Y C, Fang J Z, et al. Molecular dynamics simulations of high-energy radiation damage in W and W-Re alloys[J]. Journal of Nuclear Materials, 2019, 524: 9–20. DOI: 10.1016/j.jnucmat.2019.06.027http://dx.doi.org/10.1016/j.jnucmat.2019.06.027.
Stoller R E. The role of cascade energy and temperature in primary defect formation in iron[J]. Journal of Nuclear Materials, 2000, 276(1–3): 22–32. DOI: 10.1016/S0022-3115(99)00204-4http://dx.doi.org/10.1016/S0022-3115(99)00204-4.
Gao F, Chen D, Hu W Y, et al. Energy dissipation and defect generation in nanocrystalline silicon carbide[J]. Physical Review B, 2010, 81(18): 184101. DOI: 10.1103/physrevb.81.184101http://dx.doi.org/10.1103/physrevb.81.184101.
Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. DOI: 10.1088/0965-0393/18/1/015012http://dx.doi.org/10.1088/0965-0393/18/1/015012.
Nordlund K, Averback R S. Point defect movement and annealing in collision cascades[J]. Physical Review B, 1997, 56(5): 2421–2431. DOI: 10.1103/physrevb. 56.2421http://dx.doi.org/10.1103/physrevb.56.2421.
Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates[J]. Nuclear Engineering and Design, 1975, 33(1): 50–54. DOI: 10.1016/0029-5493(75)90035-7http://dx.doi.org/10.1016/0029-5493(75)90035-7.
Kinchin G H, Pease R S. The displacement of atoms in solids by radiation[J]. Reports on Progress in Physics, 1955, 18(1): 1–51. DOI: 10.1088/0034-4885/18/1/301http://dx.doi.org/10.1088/0034-4885/18/1/301.
Yang Q G, Olsson P. Full energy range primary radiation damage model[J]. Physical Review Materials, 2021, 5(7): 073602. DOI: 10.1103/physrevmaterials.5.073602http://dx.doi.org/10.1103/physrevmaterials.5.073602.
Nordlund K, Zinkle S J, Sand A E, et al. Improving atomic displacement and replacement calculations with physically realistic damage models[J]. Nature Communications, 2018, 9: 1084. DOI: 10.1038/s41467-018-03415-5http://dx.doi.org/10.1038/s41467-018-03415-5.
Bacon D J, Calder A F, Gao F, et al. Computer simulation of defect production by displacement cascades in metals[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 1995, 102(1–4): 37–46. DOI: 10.1016/0168-583X(95)80114-2http://dx.doi.org/10.1016/0168-583X(95)80114-2.
Xiao W J, Wu G Y, Li M H, et al. MD and OKMC simulations of the displacement cascades in nickel[J]. Nuclear Science and Techniques, 2016, 27(3): 57. DOI: 10.1007/s41365-016-0057-yhttp://dx.doi.org/10.1007/s41365-016-0057-y.
0
Views
2
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution