西安交通大学 核科学与技术学院 西安 710049
YUAN Leqi, male, born in 2000, graduated from Harbin Engineering University in 2022, master student, focusing on reactor thermal hydraulics
GOU Junli, E-mail: junligou@xjtu.edu.cn
扫 描 看 全 文
袁乐齐,吴和鑫,苟军利等.新型兆瓦级紧凑核动力装置的非能动余热排出系统设计分析[J].核技术,2024,47(01):010602.
YUAN Leqi,WU Hexin,GOU Junli,et al.Design and analysis of passive residual , heat removal system for a new megawatt and compact nuclear power plant[J].NUCLEAR TECHNIQUES,2024,47(01):010602.
袁乐齐,吴和鑫,苟军利等.新型兆瓦级紧凑核动力装置的非能动余热排出系统设计分析[J].核技术,2024,47(01):010602. DOI: 10.11889/j.0253-3219.2024.hjs.47.010602.
YUAN Leqi,WU Hexin,GOU Junli,et al.Design and analysis of passive residual , heat removal system for a new megawatt and compact nuclear power plant[J].NUCLEAR TECHNIQUES,2024,47(01):010602. DOI: 10.11889/j.0253-3219.2024.hjs.47.010602.
热管堆具有结构简单、布局紧凑、固有安全性高的特点,是无人潜航器的理想堆型之一。针对采用热管堆的新型兆瓦级高效紧凑核动力装置,设计了一种利用自然循环冷却热管绝热段的非能动余热排出系统。使用计算流体力学方法对不同几何参数的余排系统的排热能力进行模拟分析,使其保守满足最大余排功率的需求。结果表明:热管管束周围设计围板导流有利于降低流体最高温度,围板进出口宽度几乎不影响换热能力,而延长围板下部不利于自然循环;3.5兆瓦热管堆的应急冷却舱轴向长度为160 mm时可以保守满足最大余排功率,并在5⁓25 ℃的环境温度下均可正常工作。
Background,2,A heat pipe reactor is ideal for underwater unmanned vehicles (UUV) because it is simple, is compact, and has high inherent safety.,Purpose,2,A passive residual heat removal system that uses natural circulation to cool the adiabatic section of heat pipes was designed based on the characteristics of a new type of megawatt compact nuclear power plant with a heat pipe reactor.,Methods,2,Firstly, based on the characteristics of 3.5 megawatt compact nuclear power plant for UUV, natural circulation of water was utilized to cool the adiabatic section of heat pipes. Then, the computational fluid dynamics software STAR-CCM+ was used to simulate and analyze the heat removal capacity of the passive residual heat removal system with different geometric parameters, made it conservatively meeting the demand of maximum residual heat removal power.,Results & Conclusions,2,The results show that a baffle around the adiabatic section of heat pipe bundle is beneficial to reduce the maximum temperature of the fluid. The widths of the inlet and outlet of the baffle have almost no effect on the heat removal capacity, while extending the lower part of the baffle is unfavorable to natural circulation. When the axial length of the emergency cooling chamber is 160 mm, it can conservatively meet the maximum residual heat power of 0.14 MW. The maximum fluid temperature is 288 ℃, which is lower than the boiling point under working pressure, and normal operation is possible in ambient temperatures ranging from 5 ℃ to 25 ℃.
热管堆无人潜航器非能动余热排出系统高温热管数值模拟
Heat pipe reactorUnmanned underwater vehiclePassive residual heat removal systemHigh temperature heat pipeNumerical simulation
王建斌, 王志敏. UUV发展、应用及关键技术[J]. 信息与电子工程, 2007, 5(6): 476–480. DOI: 10.3969/j.issn.1672-2892.2007.06.019http://dx.doi.org/10.3969/j.issn.1672-2892.2007.06.019.
WANG Jianbin, WANG Zhimin. A survey of unmanned underwater vehicles[J]. Information and Electronic Engineering, 2007, 5(6): 476–480. DOI: 10.3969/j.issn.1672-2892.2007.06.019http://dx.doi.org/10.3969/j.issn.1672-2892.2007.06.019.
Bowen M. Enabling nuclear innovation: Leading on SMRs[R]. USA: Nuclear Innovation Alliance Organisation, 2017.
The world nuclear supply chain: Outlook 2035[R]. USA:World Nuclear Association, 2016. 10.1016/s0262-1762(16)30329-7http://dx.doi.org/10.1016/s0262-1762(16)30329-7
Wang C, Song J, Chen J, et al. Numerical study of heat transfer unit on improved thermal-radiator of TOPAZ-Ⅱ[J]. Atomic Energy Science and Technology, 2016, 50(1): 80. DOI: 10.7538/yzk.2016.50.01.0080http://dx.doi.org/10.7538/yzk.2016.50.01.0080.
Ye C, Zheng M G, Wang M L, et al. The design and simulation of a new spent fuel pool passive cooling system[J]. Annals of Nuclear Energy, 2013, 58: 124–131. DOI: 10.1016/j.anucene.2013.03.007http://dx.doi.org/10.1016/j.anucene.2013.03.007.
Wang C L, Guo Z P, Zhang D L, et al. Transient behavior of the sodium-potassium alloy heat pipe in passive residual heat removal system of molten salt reactor[J]. Progress in Nuclear Energy, 2013, 68: 142–152. DOI: 10.1016/j.pnucene.2013.07.001http://dx.doi.org/10.1016/j.pnucene.2013.07.001.
Scarlat R O, Laufer M R, Blandford E D, et al. Design and licensing strategies for the fluoride-salt-cooled, high-temperature reactor (FHR) technology[J]. Progress in Nuclear Energy, 2014, 77: 406–420. DOI: 10.1016/j.pnucene.2014.07.002http://dx.doi.org/10.1016/j.pnucene.2014.07.002.
郭斯茂, 王冠博, 唐彬, 等. 兆瓦级高效紧凑新型海洋核动力装置研究[J]. 中国基础科学, 2021, 23(3): 42–50. DOI: 10.3969/j.issn.1009-2412.2021.03.007http://dx.doi.org/10.3969/j.issn.1009-2412.2021.03.007.
GUO Simao, WANG Guanbo, TANG Bin, et al. Research on megawatt high efficiency and compact new marine nuclear power plant[J]. China Basic Science, 2021, 23(3): 42–50. DOI: 10.3969/j.issn.1009-2412.2021.03.007http://dx.doi.org/10.3969/j.issn.1009-2412.2021.03.007.
汪镇澜, 苟军利, 徐世浩, 等. 新型兆瓦级热管堆热管失效事故分析[J]. 核技术, 2022, 45(11): 110604. DOI: 10.11889/j.0253-3219.2022.hjs.45.110604http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.110604.
WANG Zhenlan, GOU Junli, XU Shihao, et al. Heat pipe failure accident analysis of a new type of megawatt heat pipe reactor[J]. Nuclear Techniques, 2022, 45(11): 110604. DOI: 10.11889/j.0253-3219.2022.hjs.45.110604http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.110604.
Huang J L, Wang C L, Guo K L, et al. Heat transfer analysis of heat pipe cooled device with thermoelectric generator for nuclear power application[J]. Nuclear Engineering and Design, 2022, 390: 111652. DOI: 10.1016/j.nucengdes.2022.111652http://dx.doi.org/10.1016/j.nucengdes.2022.111652.
Guo Y C, Li Z G, Wang K, et al. A transient multiphysics coupling method based on OpenFOAM for heat pipe cooled reactors[J]. Science China Technological Sciences, 2022, 65(1): 102–114. DOI: 10.1007/s11431-021-1874-0http://dx.doi.org/10.1007/s11431-021-1874-0.
Schulz T L. Westinghouse AP1000 advanced passive plant[J]. Nuclear Engineering and Design, 2006, 236(14–16): 1547–1557. DOI: 10.1016/j.nucengdes.2006.03.049http://dx.doi.org/10.1016/j.nucengdes.2006.03.049.
Forsberg C W, Peterson P F, Pickard P S. Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity[J]. Nuclear Technology, 2003, 144(3): 289–302. DOI: 10.13182/nt03-1http://dx.doi.org/10.13182/nt03-1.
Forsberg C W. Goals, requirements, and design implications for the advanced high-temperature reactor[C]//Proceedings of 14th International Conference on Nuclear Engineering, July 17-20, 2006, Miami, Florida, USA. 2008: 543–555. DOI: 10.1115/ICONE14-89305http://dx.doi.org/10.1115/ICONE14-89305.
Minck M J. Preventing fuel failure for a beyond design basis accident in a fluoride salt cooled high temperature reactor[D]. Massachusetts Institute of Technology, 2013.
Xiao Z J, Zhuo W B, Zheng H, et al. Experimental research progress on passive safety systems of Chinese advanced PWR[J]. Nuclear Engineering and Design, 2003, 225(2–3): 305–313. DOI: 10.1016/S0029-5493(03)00178-Xhttp://dx.doi.org/10.1016/S0029-5493(03)00178-X.
Zhang J, Buongiorno Jacopo, Golay Michael, et al. Ocean-based Passive Decay Heat Removal in the Offshore Floating Nuclear Plant (OFNP)[C]//Proceedings of the International Topical Meeting on Nuclear Reactor Thermal Hydraulics 2015 NURETH-16). 30 August - 4 September 2015, Chicago, Illinois, USA. American Nuclear Society, 2016: 3111-3124. 10.3327/jaesjb.58.2_127http://dx.doi.org/10.3327/jaesjb.58.2_127
郭斯茂, 冷军, 黄欢, 等. 固有安全海洋热管反应堆设计方案[R]. 绵阳: 中国工程物理研究院核物理与化学研究所, 2021.GUO Simao, LENG Jun, HUANG Huan,et al. Inherentsafety Marine heat pipe reactor design[R]. Mianyang: Institute of Nuclear Physics and Chemistry, China academy of Engineering Physics, 2021.
徐子英, 杨小秋. 深海海底冷、热知多少[J]. 科技风, 2019(15): 203, 213. DOI: 10.19392/j.cnki.1671-7341.201915182http://dx.doi.org/10.19392/j.cnki.1671-7341.201915182.
XU Ziying, YANG Xiaoqiu. How much do you know about the cold and heat of the deep seabed?[J]. Technology Wind, 2019(15): 203, 213. DOI: 10.19392/j.cnki.1671-7341.201915182http://dx.doi.org/10.19392/j.cnki.1671-7341.201915182.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution