图1 27~700 ℃范围内U3Si2芯块热扩散率(a, b)和热导率对温度的依从关系(c, d)
Scan for full text
Cite this article
U3Si2 is regarded as one of the most promising accident-tolerant nuclear fuels for light water reactors and is expected to replace the UO2 nuclear fuel in the future. Currently, spark plasma sintering (SPS) is an advanced technique for preparing U3Si2 pellets; however, the influence of SPS parameters on the performance of the pellets is unclear.
This study aims to investigate the effects of different sintering parameters (temperature and pressure) on the mechanical and thermal properties of the U3Si2 pellets prepared using SPS technology.
The thermal diffusivity of U3Si2 pellets was measured using a laser flash apparatus, and the thermal conductivity of the pellets was calculated. The mechanical properties of the pellets, including hardness, Young's modulus, and fracture toughness, were measured using nanoindenter. Thereafter, the influence of different sintering temperatures in the range of 1 000~1 300 ℃ and pressures in the range of 30~90 MPa on the mechanical and thermal properties of U3Si2 pellets were carefully examined.
The measurement results show that the thermal conductivity of the as-synthesized pellets increases linearly with temperature in the range 27~700 ℃. Moreover, increasing the sintering temperature and pressure improves the thermal conductivity of the U3Si2 pellets. The hardness and Young's modulus of the pellets increase with an increase in sintering temperature. They also exhibit a trend of first increasing and then stabilizing with increasing pressure, and tend to fully stabilize at 60 MPa. Moreover, the fracture toughness of the pellets decreases with the increase of sintering temperature and increases with increasing pressure.
Based on the above results, optimized SPS parameters for the U3Si2 pellets are proposed, and this study provides a reference for the preparation of high-performance U3Si2 pellets.
核燃料的热学和力学性能直接影响其服役表现。在热学性能方面,热导率决定了核燃料在服役中的温度分布。低的热导率导致燃料中心线温度升高,并使燃料中心线与包壳之间的热梯度增加,从而极大地增加了由热应力引起的燃料开裂和燃料失效的发生概率[
自2011年福岛核事故以来,提高轻水反应堆核燃料的事故容错性能已成为当务之急,由此提出的事故容错燃料(Accident Tolerant Fuels,ATFs)受到了广泛关注[
不同的烧结工艺和烧结参数会显著影响U3Si2芯块的性能。就传统真空烧结技术而言,所得芯块呈现出较低的致密度(˂94%理论密度(Theoretical Density,TD))和较差的力学性能。Metzger等[
综上所述,SPS能够提高U3Si2芯块的力学和热学性能,但不同SPS参数对U3Si2芯块的力学和热学性能的影响如何,目前尚未有文章对其开展研究。本文采用SPS技术在不同烧结参数(温度和压力)下制备了U3Si2芯块,考察了芯块的力学和热学性能,并基于其性能测试结果提出优化的SPS参数。
U3Si2芯块的制备过程有过报道,包括熟料制备和芯块烧结两个步骤,具体细节可以参考文献[
样品Samples | SPS温度 SPS temperature / ℃ | SPS压力 SPS pressure / MPa |
---|---|---|
SPS-1 | 1 000 | 60 |
SPS-2 | 1 100 | 60 |
SPS-3 | 1 200 | 60 |
SPS-4 | 1 300 | 60 |
SPS-5 SPS-6 |
1 100 1 100 |
30 90 |
将所有U3Si2芯块分别用800、1 500、2 000和4 000目SiC砂纸进行打磨。随后,用金刚石悬浮液(9 μm、3 μm和1 μm)对这些芯块进行抛光。使用密度计(AR-150 PML,宏拓仪器有限公司,中国东莞)按阿基米德法测量抛光后芯块的物理密度。
采用激光热导仪(LFA 457 MicroFlash,Netzch,Germany)测量U3Si2芯块的热扩散率。采用直径为10 mm、高度为2 mm的芯块作为测试样品,并将所有样品的上下表面都喷涂石墨。测试开始前,将装有芯块的腔室抽真空并充入高纯度氩气(99.999 9%),重复操作3次。在27~700 ℃的温度范围内,采用5 ℃·min-1的升温速率测量芯块的热扩散率。相邻的测试温度之间的间隔为50 ℃,对每个测试温度点进行三次测量,采用Proteus软件分析测试结果。采用
λ=D·Cp·ρ | (1) |
ρ=ρ0[1+αp(T-T0)]3 | (2) |
CP=147.56+0.025 85·T | (3) |
式中:λ是热导率,W∙m-1∙℃-1;Cp是比热容,J∙mol-1∙℃-1;D是热扩散率,m2∙s-1;T是温度;T0是参考温度,K;ρ是芯块的密度,g∙cm-3;ρ0是在T0时测定的密度;αp是热膨胀系数的平均值,取16.1×10-6 ℃-1 [
采用纳米压痕(仪器:Agilent U9820A Nano Indenter G200)测量U3Si2芯块的硬度、杨氏模量和断裂韧性。所有测试过程均采用金刚石Berkovich压头(TB13989-XP)。分别采用连续刚度测量法(Continuous Stiffness Measurement,CSM)和高载荷法(High Load,HL)测试硬度和断裂韧性。在CSM法中,通过压头施加载荷在芯块截面形成清晰的压痕,以获得芯块的硬度和杨氏模量;在HL法中,通过压头施加载荷直至U3Si2芯块截面破裂,以获得断裂韧性。采用这两种测试方法时,都在样品截面上随机选择10个测试点,且相邻两个测试点之间的距离均大于200 μm。此外,硬度测量时,采用500 mN载荷压力(P)和2 000 nm压痕深度。根据Taylor的研究[
KIC=δ(EH)0.5(PC1.5) | (4) |
式中:δ是与压头有关的参数,取0.016;E(GPa)和H(GPa)分别是U3Si2芯块的杨氏模量和硬度;P(N)是载荷;C(μm)是平均裂纹长度。
不同SPS参数下制备的U3Si2芯块XRD和SEM表征和结果见之前的研究报道[
样品 Samples | 密度 Density / g·cm-3 | 相对密度 Theoretical density / % |
---|---|---|
SPS-1 | 11.4±0.10 | 93.4 |
SPS-2 | 11.6±0.02 | 95.1 |
SPS-3 | 11.9±0.02 | 97.5 |
SPS-4 | 12.0±0.02 | 98.4 |
SPS-5 SPS-6 |
10.6±0.40 11.7±0.02 |
86.9 95.9 |
图1 27~700 ℃范围内U3Si2芯块热扩散率(a, b)和热导率对温度的依从关系(c, d)
Fig.1 Temperature dependence of the thermal diffusivity (a, b) and thermal conductivity (c, d) of U3Si2 pellets in the range 27~700 ℃
根据各芯块在室温下(T0 = 27 ℃)的密度,采用式(
结合
进一步,将本文热导率的测试值和文献报道的热导率数据进行了比较。Mohamad等[
图2 U3Si2芯块压痕的扫描电镜图像(a) SPS-4塑性变形, (b) SPS-4脆性断裂,(c) SPS-1脆性断裂,(d) SPS-5测试区域
Fig.2 SEM images of the indentations on the surfaces of the U3Si2 pellets (a) SPS-4 with plastic deformation, (b) SPS-4 with brittle fracture, (c) SPS-1 with brittle fracture, (d) testing area of SPS-5
H=H0√1+h*/h | (5) |
式中:H0是无限深度时的硬度;h∗是取决于材料和压头几何形状的特征长度尺度。当H02是“H2-1/h”曲线近表面部分的截距时,可从H0得出材料硬度。从拟合曲线(
图3 U3Si2芯块的硬度与压痕深度的关系 (a) 在60 MPa不同温度下制备的4种芯块,(b) 在1 100 ℃不同压力下制备的2种芯块,(c⁓h)与(a)和(b)相对应的6种U3Si2芯块的“H2-1/h”曲线
Fig.3 Hardness of U3Si2 pellets versus the indentation depth (a) 4 pellets prepared under different dwell temperatures at 60 MPa, (b) 2 pellets prepared under different pressures at 1 100 ℃, (c⁓h) H2-1/h curves of 6 U3Si2 pellets corresponding to (a) and (b)
通过“H2-1/h”曲线(
图4 U3Si2芯块的硬度和断裂韧性与温度(a)和压力(b)的关系,以及芯块的杨氏模量与温度(c)和压力(d)的关系
Fig.4 Hardness and fracture toughness of U3Si2 pellets against dwell temperature (a) and pressure (b), Young's modulus of the pellets against dwell temperature (c) and pressure (d)
根据
Carvajal等[
在芯块断裂韧性方面,本文数据涵盖了1~3.3 MPa∙m1/2的报道值[
样品 Samples | (E/H)0.5 | 平均裂纹长度 Average crack length / μm |
---|---|---|
SPS-1 | 4.5 | 7.8±2.8 |
SPS-2 | 4.4 | 9.6±2.0 |
SPS-3 | 4.4 | 13.2±1.7 |
SPS-4 | 4.5 | 15.0±1.6 |
SPS-5 SPS-6 |
4.2 4.3 |
9.7±2.2 8.3±2.2 |
本文研究了SPS参数对U3Si2芯块力学和热学性能的影响。主要结论如下:
1)U3Si2芯块的热导率整体上随着烧结温度和压力的升高而增大,这主要归因于芯块致密度的增加。此外,较低的烧结温度(<1 100 ℃)和较高的压力(>60 MPa)对热导率的影响趋于缓和。在27~700 ℃内,本文的热导率数据(6.7~16.9 W∙m-1∙℃-1)涵盖了文献报道数值。
2)随着烧结温度的升高,芯块的硬度和杨氏模量增大;随着压力的升高,硬度和杨氏模量呈现先增大后平缓的趋势,压力为60 MPa时达到平缓。当温度为1 300 ℃和压力为60 MPa时,二者达到最大值,分别为9.1 GPa和160.5 GPa。
3)芯块的断裂韧性随着烧结温度的升高呈下降趋势,但随着压力的升高而增大。当温度为1 000 ℃和压力为60 MPa时,其达到最大值,为3.3 MPa∙m1/2。
为了获得较优的U3Si2力学和热学性能,建议优选1 100 ℃和60 MPa作为SPS参数。需要注意的是,U3Si2芯块的化学组成、微结构和制备工艺流程等会影响其性能。因此,在实际应用SPS技术时需要兼顾这些因素的影响。
邹金钊负责实验设计,样品制备及表征,数据整理与分析,论文初稿撰写与修改;徐士专负责样品的力学性能表征,数据整理与分析;王鹏负责研究方案构思与指导,数据分析,论文修改;曹长青负责研究方案指导,论文修改,技术支持;严超负责样品的热学性能表征,数据整理;朱智勇负责对论文作评论性审阅,论文修改;林俊负责研究方案指导,论文修改及经费支持;尤䶮负责项目管理;卢俊强负责项目支持和管理;朱丽兵负责项目支持和管理。
Zhou W, Zhou W Z. Enhanced thermal conductivity accident tolerant fuels for improved reactor safety - a comprehensive review[J]. Annals of Nuclear Energy, 2018, 119: 66–86. DOI: 10.1016/j.anucene.2018.04.040. [Baidu Scholar]
Parker S S, White J T, Hosemann P, et al. Thermophysical properties of thorium mononitride from 298 to 1700 K[J]. Journal of Nuclear Materials, 2019, 526: 151760. DOI: 10.1016/j.jnucmat.2019.151760. [Baidu Scholar]
Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735–758. DOI: 10.1016/j.actamat.2012.11.004. [Baidu Scholar]
Katoh Y, Snead L L. Silicon carbide and its composites for nuclear applications - Historical overview[J]. Journal of Nuclear Materials, 2019, 526: 151849. DOI: 10.1016/j.jnucmat.2019.151849. [Baidu Scholar]
Metzger K E, Knight T W, Roberts E, et al. Determination of mechanical behavior of U3Si2 nuclear fuel by microindentation method[J]. Progress in Nuclear Energy, 2017, 99: 147–154. DOI: 10.1016/j.pnucene.2017. 05.007. [Baidu Scholar]
Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 2014, 448(1–3): 374–379. DOI: 10.1016/j.jnucmat.2013.12.005. [Baidu Scholar]
Johnson K D, Raftery A M, Lopes D A, et al. Fabrication and microstructural analysis of UN-U3Si2 composites for accident tolerant fuel applications[J]. Journal of Nuclear Materials, 2016, 477: 18–23. DOI: 10.1016/j.jnucmat. 2016.05.004. [Baidu Scholar]
Ortega L H, Blamer B J, Evans J A, et al. Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium sesquisilicide (U3Si2) with increased uranium loading[J]. Journal of Nuclear Materials, 2016, 471: 116–121. DOI: 10.1016/j.jnucmat. 2016.01.014. [Baidu Scholar]
张海青, 卢林远, 王鹏, 等. 事故容错燃料结构对导热性能影响的计算[J]. 核技术, 2021, 44(3): 030602. DOI: 10.11889/j.0253-3219.2021.hjs.44.030602. [Baidu Scholar]
ZHANG Haiqing, LU Linyuan, WANG Peng, et al. Evaluation of influence of fault tolerant fuel structure on thermal conductivity[J]. Nuclear Techniques, 2021, 44(3): 030602. DOI: 10.11889/j.0253-3219.2021.hjs.44.030602. [Baidu Scholar]
Harp J M, Lessing P A, Hoggan R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 2015, 466: 728–738. DOI: 10.1016/j.jnucmat.2015.06.027. [Baidu Scholar]
White J T, Nelson A T, Dunwoody J T, et al. Thermophysical properties of U3Si2[J]. Journal of Nuclear Materials, 2015, 464: 275–280. DOI: 10.1016/j.jnucmat. 2015.04.031. [Baidu Scholar]
Zou J Z, Xu S Z, Chen J, et al. Effects of spark plasma sintering parameters on the microstructure of U3Si2 pellets[J]. Journal of Nuclear Materials, 2023, 585: 154649. DOI: 10.1016/j.jnucmat.2023.154649. [Baidu Scholar]
Carvajal-Nunez U, Saleh T A, White J T, et al. Determination of elastic properties of polycrystalline U3Si2 using resonant ultrasound spectroscopy[J]. Journal of Nuclear Materials, 2018, 498: 438–444. DOI: 10.1016/j.jnucmat.2017.11.008. [Baidu Scholar]
Gong B W, Yao T K, Lei P H, et al. U3Si2 and UO2 composites densified by spark plasma sintering for accident-tolerant fuels[J]. Journal of Nuclear Materials, 2020, 534: 152147. DOI: 10.1016/j.jnucmat.2020.152147. [Baidu Scholar]
Lopes D A, Benarosch A, Middleburgh S, et al. Spark plasma sintering and microstructural analysis of pure and Mo doped U3Si2 pellets[J]. Journal of Nuclear Materials, 2017, 496: 234–241. DOI: 10.1016/j.jnucmat.2017. 09.037. [Baidu Scholar]
Mohamad A, Ohishi Y, Muta H, et al. Thermal and mechanical properties of polycrystalline U3Si2 synthesized by spark plasma sintering[J]. Journal of Nuclear Science and Technology, 2018, 55(10): 1141–1150. DOI: 10.1080/00223131.2018.1480431. [Baidu Scholar]
Gong B W, Yao T K, Lei P H, et al. Spark plasma sintering (SPS) densified U3Si2 pellets: Microstructure control and enhanced mechanical and oxidation properties[J]. Journal of Alloys and Compounds, 2020, 825: 154022. DOI: 10.1016/j.jallcom.2020.154022. [Baidu Scholar]
Buckley J, Goddard D T, Abram T J. Studies on the spark plasma sintering of U3Si2: processing parameters and interactions[J]. Journal of Nuclear Materials, 2021, 544: 152655. DOI: 10.1016/j.jnucmat.2020.152655. [Baidu Scholar]
Yang K, Kardoulaki E, Zhao D, et al. Uranium nitride (UN) pellets with controllable microstructure and phase - fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties[J]. Journal of Nuclear Materials, 2021, 557: 153272. DOI: 10.1016/j.jnucmat.2021.153272. [Baidu Scholar]
Margueret A, Balice L, Popa K, et al. Spark plasma sintering of UO2 nanopowders: pressure, heating rate and current effects[J]. Journal of the European Ceramic Society, 2022, 42(13): 6056–6066. DOI: 10.1016/j.jeurceramsoc.2022.05.070. [Baidu Scholar]
Cavaliere P, Sadeghi B, Shabani A. Spark plasma sintering: process fundamentals[M]//Spark Plasma Sintering of Materials. Cham: Springer, 2019: 3-20.10.1007/978-3-030-05327-7_1. 10.1007/978-3-030-05327-7_1 [Baidu Scholar]
Monchoux J P, Couret A, Durand L, et al. Elaboration of metallic materials by SPS: processing, microstructures, properties, and shaping[J]. Metals, 2021, 11(2): 322. DOI: 10.3390/met11020322. [Baidu Scholar]
Matzke H, Spino J. Formation of the rim structure in high burnup fuel[J]. Journal of Nuclear Materials, 1997, 248: 170–179. DOI: 10.1016/S0022-3115(97)00171-2. [Baidu Scholar]
Taylor K, McMurtry C. Synthesis and fabrication of refractory uranium compounds[R]. CoCarborundum. Research and Development Div., Niagara Falls, NY, 1961. 10.2172/4020201 [Baidu Scholar]
Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564–1583. DOI: 10.1557/JMR.1992.1564. [Baidu Scholar]
Khor K A, Cheng K H, Yu L G, et al. Thermal conductivity and dielectric constant of spark plasma sintered aluminum nitride[J]. Materials Science and Engineering: A, 2003, 347(1–2): 300–305. DOI: 10.1016/S0921-5093(02)00601-9. [Baidu Scholar]
Smith D S, Alzina A, Bourret J, et al. Thermal conductivity of porous materials[J]. Journal of Materials Research, 2013, 28(17): 2260–2272. DOI: 10.1557/jmr.2013.179. [Baidu Scholar]
Ranasinghe J I, Jossou E, Malakkal L, et al. Study on radial temperature distribution of aluminum dispersed nuclear fuels: U3O8-Al, U3Si2-Al, and UN-Al[J]. Journal of Nuclear Engineering and Radiation Science, 2018, 4(3): 031020. DOI: 10.1115/1.4039886. [Baidu Scholar]
Kaloni T P, Torres E. Thermal and mechanical properties of U3Si2: a combined ab-initio and molecular dynamics study[J]. Journal of Nuclear Materials, 2020, 533: 152090. DOI: 10.1016/j.jnucmat.2020.152090. [Baidu Scholar]
Nix W D, Gao H J. Indentation size effects in crystalline materials: a law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411–425. DOI: 10.1016/S0022-5096(97)00086-0. [Baidu Scholar]
Carvajal-Nunez U, Elbakhshwan M S, Mara N A, et al. Mechanical properties of uranium silicides by nanoindentation and finite elements modeling[J]. JOM, 2018, 70(2): 203–208. DOI: 10.1007/s11837-017-2667-1. [Baidu Scholar]
Wang T, Qiu N X, Wen X D, et al. First-principles investigations on the electronic structures of U3Si2[J]. Journal of Nuclear Materials, 2016, 469: 194–199. DOI: 10.1016/j.jnucmat.2015.11.060. [Baidu Scholar]
233
Views
138
Downloads
0
CSCD
Related Articles
Related Author
Related Institution