浏览全部资源
扫码关注微信
1.中国科学院上海应用物理研究所上海201800
2.中国科学院大学北京100049
WANG Kai, male, born in 1987, graduated from North China Electric Power University in 2012, doctoral student, focusing on nuclear safety analysis
WANG Naxiu, E-mail: wangnaxiu@sinap.ac.cn
Published Online:19 November 2024,
Received:19 April 2024,
Revised:15 May 2024,
移动端阅览
WANG Kai, WANG Chaoqun, YANG Qun, et al. Uncertainty and sensibility analysis of reactivity insertion transient accident of a 150 MWt molten salt reactor (SM-MSR). [J/OL]. NUCLEAR TECHNIQUES, 2024,XXXXXX
熔盐反应堆是第四代核反应堆的6种候选堆型之一,具有良好的安全特性。反应性引入事故是熔盐堆重要的设计基准事故之一,通过对150 MWt模块化熔盐堆(Small Modular Molten Salt Reactors,SM-MSR)反应性引入事故的分析和研究有利于深入了解熔盐堆的安全特性。研究150 MWt熔盐堆反应性引入事故分析结果的不确定性和参数的敏感性,为熔盐堆设计和安全分析提供重要的支持。采用RELAP5-TMSR程序建立瞬态分析模型,并采用基于蒙特卡罗方法的输入不确定性传递方法研究反应性引入事故的不确定性,通过多元线性回归法分析参数的敏感性。分析结果表明:反应性引入事故堆芯出口温度最高值为727.4 ℃,低于安全限值(800 ℃),燃料盐出口最高温度分布符合正态分布。熔盐堆具有良好的固有安全特性,在反应性引入事故下,影响反应堆安全最敏感的5个因素分别为燃料盐密度、堆芯阻力系数、堆芯功率、一回路阻力系数、停堆深度。
Background
2
Molten salt reactors have been selected as one of the promising candidate Generation IV reactor technologies
due to the advantages of inherent safety and high economic efficiency. The small modular molten salt reactor (SM-MSR)
which utilizes low-enriched uranium and thorium fuels
is regarded as a wise development path to speed deployment time. Uncertainty and sensibility analysis of accidents possess a great guidance in nuclear reactor design and safety analysis that can be performed to obtain the safety boundary and through sensitivity analysis
thereafter to obtain the correlation of the accident consequence and input parameters. Reactivity insertion transient accident represents a type of hypothetical accidents of SM-MSR
and the study of reactivity insertion transient accident can offer useful information to improve physics thermohydraulic and structure designs.
Purpose
2
This study aims to investigate the uncertainty and sensibility of MSR reactivity insertion accident and provide supports for the design and safety analysis of the small modular molten salt reactor.
Methods
2
RELAP5-TMSR code was employed to establish a transient behavior analysis model for SM-MSR
and the model consisted of four coupled parts
including the primary circuit
2nd circuit
air cooling system modules and Passive residual heat removal system. Then
propagation of input uncertainty approach on the basis of Monte Carlo methods was employed to analyze the uncertainty of reactivity insertion transient accident consequence. Uncertain parameters for the reactivity insertion transient accident were selected by the phenomena identification and ranking table (PIRT). Subsequencely
a list of input parameters along with their associated density functions was adopted by using a probabilistic methodology to establish the code run times and sets of uncertain input parameters that was propagated through the RELAP5-TMSR code
and then obtain the upper and lower uncertainty bands of the reactivity insertion transient consequence. Finally
the sensibility of input parameters was analyzed by performing Multiple Linear Regression (MLR) method
and the F-test was used to assess whether the MLR models comply with statistical laws. If the linear model was strong collinear
a significance test of the semi-partial correlation coefficient (SPC) was used for the ranking of input uncertainty parameters
otherwise
the standardized regression coefficient (SRC) would be used for the significance test.
Results
2
The uncertainty analysis results show that the maximum fuel salt temperature of SM-MSR is 727.4 ℃ which is lower than the acceptance criteria (800 ℃). Through statistical analysis
the maximum value of reactor outlet fuel salt temperature is normally distributed.
Conclusions
2
The molten salt reactor has good safety characteristics
and the 5 important parameters are density of fuel salt
local resistance coefficient of reactor core
reactor power
local resistance coefficient of primary circuit and reactor shutdown margin.
熔盐堆反应性引入事故安全分析不确定性分析敏感性分析
Molten salt reactorReactivity insertion AccidentSafety analysisUncertainty analysisSensibility analysis
江绵恒, 徐洪杰, 戴志敏. 未来先进核裂变能: TMSR核能系统[J]. 中国科学院院刊, 2012, 27(3): 366–374. DOI: 10.3969/j.issn.1000-3045.2012.03.016http://dx.doi.org/10.3969/j.issn.1000-3045.2012.03.016.
JIANG Mianheng, XU Hongjie, DAI Zhimin. Advanced fission energy program-TMSR nuclear energy system[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(3): 366–374. DOI: 10.3969/j.issn.1000-3045.2012.03.016http://dx.doi.org/10.3969/j.issn.1000-3045.2012.03.016.
徐洪杰, 戴志敏, 蔡翔舟, 等. 钍基熔盐堆和核能综合利用[J]. 现代物理知识, 2018, 30(4): 25–34. DOI: 10.13405/j.cnki.xdwz.2018.04.007http://dx.doi.org/10.13405/j.cnki.xdwz.2018.04.007.
XU Hongjie, DAI Zhimin, CAI Xiangzhou, et al. Thorium-based molten salt reactor and comprehensive utilization of nuclear energy[J]. Modern Physics, 2018, 30(4): 25–34. DOI: 10.13405/j.cnki.xdwz.2018.04.007http://dx.doi.org/10.13405/j.cnki.xdwz.2018.04.007.
蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统[J]. 物理, 2016, 45(9): 578–590. DOI: 10.7693/wl20160904http://dx.doi.org/10.7693/wl20160904.
CAI Xiangzhou, DAI Zhimin, XU Hongjie. Thorium molten salt reactor nuclear energy system[J]. Physics, 2016, 45(9): 578–590. DOI: 10.7693/wl20160904http://dx.doi.org/10.7693/wl20160904.
焦小伟, 王凯, 王超群, 等. 熔盐堆低功率工况下反应性引入事故初始条件敏感性探讨[J]. 核技术, 2021, 44(6): 060602. DOI: 10.11889/j.0253-3219.2021.hjs.44.060602http://dx.doi.org/10.11889/j.0253-3219.2021.hjs.44.060602.
JIAO Xiaowei, WANG Kai, WANG Chaoqun, et al. Study on sensitivity of initial conditions of reactivity initiated accident under low power conditions of molten salt reactor[J]. Nuclear Techniques, 2021, 44(6): 060602. DOI: 10.11889/j.0253-3219.2021.hjs.44.060602http://dx.doi.org/10.11889/j.0253-3219.2021.hjs.44.060602.
王凯, 焦小伟, 杨群, 等. 紧急停堆棒落棒时间对熔盐堆反应性引入瞬态的影响[J]. 核技术, 2020, 43(9): 090606. DOI: 10.11889/j.0253-3219.2020.hjs.43.090606http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.090606.
WANG Kai, JIAO Xiaowei, YANG Qun, et al. The effect of scram rod drop time on the consequences of molten salt reactor reactivity insertion transient[J]. Nuclear Techniques, 2020, 43(9): 090606. DOI: 10.11889/j.0253-3219.2020.hjs.43.090606http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.090606.
Zhu L, Pu P, Du S, et al. Simulation of neutron diffusion and transient analysis of MSR[J]. Nuclear Science and Techniques, 2014, 25(2): 020601. DOI: 10.13538/j.1001-8042/nst.25.020601http://dx.doi.org/10.13538/j.1001-8042/nst.25.020601.
Zhang Y P, Ma Y W, Wu J H, et al. Preliminary analysis of fuel cycle performance for a small modular heavy water-moderated thorium molten salt reactor[J]. Nuclear Science and Techniques, 2020, 31(11): 108. DOI: 10.1007/s41365-020-00823-5http://dx.doi.org/10.1007/s41365-020-00823-5.
Zhang D L, Qiu S Z, Liu C L, et al. Steady thermal hydraulic analysis for a molten salt reactor[J]. Nuclear Science and Techniques, 2008, 19(3): 187–192. DOI: 10.1016/S1001-8042(08)60048-2http://dx.doi.org/10.1016/S1001-8042(08)60048-2.
秋穗正, 张大林, 苏光辉, 等. 新概念熔盐堆的固有安全性及相关关键问题研究[J]. 原子能科学技术, 2009, 43(z1): 64-75. DOI: 10.7538/yzk.2009.43.suppl.0064http://dx.doi.org/10.7538/yzk.2009.43.suppl.0064.
QIU Suizheng, ZHANG Dalin, SU Guanghui, et al. Research on inherent safety and relative key issues of a moiten salt reactor[J]. Atomic Energy Science and Technology, 2009, 43(z1): 64-75. DOI: 10.7538/yzk.2009.43.suppl.0064http://dx.doi.org/10.7538/yzk.2009.43.suppl.0064.
Zhu G F, Guo W, Kang X Z, et al. Neutronic effect of graphite dimensional change in a small modular molten salt reactor[J]. International Journal of Energy Research, 2021, 45(8): 11976–11991. DOI: 10.1002/er.5964http://dx.doi.org/10.1002/er.5964.
许田贵, 邹杨, 徐博, 等. 小型模块化熔盐堆误提棒ATWS事故分析[J]. 核技术, 2022, 45(5): 050603. DOI: 10.11889/j.0253-3219.2022.hjs.45.050603http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.050603.
XU Tiangui, ZOU Yang, XU Bo, et al. ATWS accident analysis of rod withdrawal in small modular molten salt reactor[J]. Nuclear Techniques, 2022, 45(5):050603. DOI: 10.11889/j.0253-3219.2022.hjs.45.050603http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.050603.
倪超. AP1000核电厂大破口失水事故最佳估算分析建模与不确定性研究[D]. 上海: 上海交通大学, 2011.
NI Chao. Modeling of AP1000 nuclear power plant Lb-Loca best estimate analysis and uncertainty study[D]. Shanghai: Shanghai Jiao Tong University, 2011.
冉旭, 张晓华, 李捷, 等. 核电厂最佳估算加不确定性分析方法研究综述[J]. 科技视界, 2015(24): 11–13, 16. DOI: 10.19694/j.cnki.issn2095-2457.2015.24.003http://dx.doi.org/10.19694/j.cnki.issn2095-2457.2015.24.003.
RAN Xu, ZHANG Xiaohua, LI Jie, et al. Overview in the development of best estimate plus uncertainty safety analysis[J]. Science & Technology Vision, 2015(24): 11–13, 16. DOI: 10.19694/j.cnki.issn2095-2457.2015.24.003http://dx.doi.org/10.19694/j.cnki.issn2095-2457.2015.24.003.
周天泽, 虞凯程, 程懋松, 等. 基于KNN方法的熔盐堆系统瞬态识别模型开发及分析[J]. 核技术, 2023, 46(11): 110604. DOI: 10.11889/j.0253-3219.2023.hjs.46.110604http://dx.doi.org/10.11889/j.0253-3219.2023.hjs.46.110604.
ZHOU Tianze, YU Kaicheng, CHENG Maosong, et al. Development and analysis of a K-nearest-neighbor-based transient identification model for molten salt reactor systems[J]. Nuclear Techniques, 2023, 46(11): 110604. DOI: 10.11889/j.0253-3219.2023.hjs.46.110604http://dx.doi.org/10.11889/j.0253-3219.2023.hjs.46.110604.
宋诗阳, 程懋松, 林铭, 等. 基于RELAP5和子通道程序的熔盐冷却快堆多尺度热工流体耦合程序开发及应用[J]. 核技术, 2022, 45(7): 070602. DOI: 10.11889/j.0253-3219.2022.hjs.45.070602http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.070602.
SONG Shiyang, CHENG Maosong, LIN Ming, et al. Development and application of multi-scale thermal fluid coupling program for molten salt cooled fast reactor based on RELAP5 and sub-channel program[J]. Nuclear Techniques, 2022, 45(7): 070602. DOI: 10.11889/j.0253-3219.2022.hjs.45.070602http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.070602.
Wang C Q, Yang Q, Wang K, et al. Sensitivity analysis of power related parameters in a reactivity-initiated accident of a molten salt reactor[C]//2021 28th International Conference on Nuclear Engineering. August4–6, 2021. DOI: 10.1115/ICONE28-64430http://dx.doi.org/10.1115/ICONE28-64430.
陈玉爽. 高温熔盐及熔盐换热器传热特性的实验和模拟研究[D]. 上海: 中国科学院上海应用物理研究所, 2021. DOI: 10.27585/d.cnki.gkshs.2021.000009http://dx.doi.org/10.27585/d.cnki.gkshs.2021.000009.
CHEN Yushuang. Experimental and simulation research on heat transfer characteristic of high temperature molten salt and molten salt heat exchanger[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2021. DOI: 10.27585/d.cnki.gkshs.2021.000009http://dx.doi.org/10.27585/d.cnki.gkshs.2021.000009.
Marina Pérez Ferragut. Integration of a quantitative-based selection procedure in an uncertainty analysis methodology for NPP safety analysis[D]. Universitat Politècnica de Catalunya, 2011.
Wilks S S. Determination of sample sizes for setting tolerance limits[J]. The Annals of Mathematical Statistics, 1941, 12(1): 91–96. DOI: 10.1214/aoms/1177731788http://dx.doi.org/10.1214/aoms/1177731788.
Manache G, Melching C S. Identification of reliable regression- and correlation-based sensitivity measures for importance ranking of water-quality model parameters[J]. Environmental Modelling & Software, 2008, 23(5): 549–562. DOI: 10.1016/j.envsoft.2007.08.001http://dx.doi.org/10.1016/j.envsoft.2007.08.001.
Jiao X, Shao S, Wang K, et al. Functional reliability analysis of a molten salt natural circulation system[J]. Nuclear Engineering and Design, 2018, 332: 127–136. DOI: 10.1016/j.nucengdes.2018.03.024http://dx.doi.org/10.1016/j.nucengdes.2018.03.024.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution