1.南华大学 核科学技术学院 衡阳 421001
陈琪,女,2001年出生,现就读于南华大学核科学技术学院,研究领域为快堆热工水力分析
赵鹏程,E-mail:zhaopengcheng1030@163.com
扫 描 看 全 文
陈琪,凌煜凡,赵鹏程等.铅铋快堆单盒环形燃料组件典型堵流事故分析[J].核技术,2023,46(11):110602.
CHEN Qi,LING Yufan,ZHAO Pengcheng,et al.Analysis of typical flow blockage accidents of single annular fuel assembly for lead-bismuth cooled fast reactor[J].NUCLEAR TECHNIQUES,2023,46(11):110602.
陈琪,凌煜凡,赵鹏程等.铅铋快堆单盒环形燃料组件典型堵流事故分析[J].核技术,2023,46(11):110602. DOI: 10.11889/j.0253-3219.2023.hjs.46.110602.
CHEN Qi,LING Yufan,ZHAO Pengcheng,et al.Analysis of typical flow blockage accidents of single annular fuel assembly for lead-bismuth cooled fast reactor[J].NUCLEAR TECHNIQUES,2023,46(11):110602. DOI: 10.11889/j.0253-3219.2023.hjs.46.110602.
铅铋冷却环形燃料组件具有许多安全性优势,但在其运行过程中由于铅铋冷却剂的腐蚀作用,易发生堵流事故而导致传热恶化,从而危及第一道屏障的完整性,为此,亟须开展铅铋快堆环形燃料组件堵流事故研究。建立5×5单盒环形燃料组件模型,基于计算流体力学(Computational Fluid Dynamics,CFD)软件Fluent对内外通道不同堵塞面积、堵块厚度,以及堵块轴向位置下的堵流工况进行模拟分析,分析了内外包壳温度分布、堵块附近流场的轴向速度分布、通道质量流量变化、堵塞处燃料元件径向温度分布以及热量分配,并与正常工况下计算结果进行对比。结果表明:随堵塞面积增加,堵塞区域包壳温度显著上升,回流区域范围扩大,燃料芯块最高温度点位置向堵块侧偏移,堵块侧热流密度减小;当堵塞份额较大时,随堵块厚度增加,各参数变化与上述结论类似;堵块位于入口处时包壳局部温升较堵块位于中心处时更小;且随堵塞面积、厚度的增加以及堵块位置向活性区入口的不断靠近,内通道流量损失程度明显增大,而外通道流量几乎不受影响,因此,内通道发生堵流事故时危害更为严重。
Background,2,The annular fuel assembly of lead-bismuth cooled fast reactor has many safety advantages, but during its operation, due to the corrosive effect of lead-bismuth coolant, it is prone to blockage accidents, resulting in deterioration of heat transfer and jeopardizing the integrity of the first barrier. Therefore, it is urgent to research and analyze the blockage accident for the annular fuel assembly of the lead-bismuth-cooled fast reactor.,Methods,2,A 5×5 single annular fuel assembly model was established, and numerical simulations for blockage of the inner and outer channel were carried out with different blockage areas, blockage thicknesses, and axial position of the blockage based on the computational fluid dynamics (CFD) software Fluent. The temperature distribution of the claddings, the flow field distribution near the blockage, the mass flow change of the channel, the radial temperature distribution, and the heat distribution of the fuel element at the blockage are compared with the result in no-blockage case.,Results,2,Simulation results indicate that the increase in the blockage area leads to a significant increase in the cladding temperature of the blockage area, an expansion of the scope of the recirculation area expands, the position of the highest temperature point of the fuel pellet shifts to the blockage side, and the heat flux density on the blockage side decreases. When the blockage fraction is large, the changes of parameters are similar to the above conclusions as the blockage thickness increases; when the blockage is located at the entrance, the local temperature rise of the cladding is smaller than that when the blockage is located at the center; with the increase of the blockage area and thickness and as the blockage position gets closer to the entrance of the active zone, the flow loss of the inner channel increases significantly, while the flow of the outer channel is almost unaffected.,Conclusions,2,Therefore, the damage is more serious when the blockage accident occurs in the inner channel.
铅铋快堆环形燃料堵流事故计算流体力学
Lead-bismuth cooled fast reactorAnnular FuelFlow blockage accidentsComputational fluid dynamics
曾付林, 唐锚, 赵鹏程, 等. 栅径比对环形燃料外周向温度分布不均匀性影响[J]. 核技术, 2023, 46(9): 090601. DOI: 10.11889/j.0253-3219.2023.hjs.46.090601http://dx.doi.org/10.11889/j.0253-3219.2023.hjs.46.090601.
ZENG Fulin, TANG Mao, ZHAO Pengcheng, et al. Influence of the pitch-to-diameter ratio on the circumferential non-uniformity of annular fuel outer temperature distribution[J]. Nuclear Techniques, 2023, 46(9): 090601. DOI: 10.11889/j.0253-3219.2023.hjs.46.090601http://dx.doi.org/10.11889/j.0253-3219.2023.hjs.46.090601.
陈钊, 肖英杰, 赵鹏程, 等. 环形燃料栅元有效温度计算方法研究[J]. 核技术, 2022, 45(12): 120603. DOI: 10.11889/j.0253-3219.2022.hjs.45.120603http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.120603.
CHEN Zhao, XIAO Yingjie, ZHAO Pengcheng, et al. Research on effective temperature calculation method of annular fuel cell[J]. Nuclear Techniques, 2022, 45(12): 120603. DOI: 10.11889/j.0253-3219.2022.hjs.45.120603http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.120603.
Hejzlar P, Kazimi M S. Annular fuel for high-power-density pressurized water reactors: motivation and overview[J]. Nuclear Technology, 2007, 160(1): 2-15. DOI: 10.13182/NT160-2-15http://dx.doi.org/10.13182/NT160-2-15.
魏诗颖, 王成龙, 田文喜, 等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术, 2019, 53(2): 326–336. DOI: 10.7538/yzk.2018.youxian.0335http://dx.doi.org/10.7538/yzk.2018.youxian.0335.
WEI Shiying, WANG Chenglong, TIAN Wenxi, et al. Research progress in key thermal-hydraulic issue of lead-based fast reactor[J]. Atomic Energy Science and Technology, 2019, 53(2): 326–336. DOI: 10.7538/yzk.2018.youxian.0335http://dx.doi.org/10.7538/yzk.2018.youxian.0335.
Zhang J. A review of steel corrosion by liquid lead and lead-bismuth[J]. Corrosion Science, 2009, 51(6): 1207-1227. DOI: 10.1016/j.corsci.2009.03.013http://dx.doi.org/10.1016/j.corsci.2009.03.013.
徐銤. 快堆安全分析[M]. 中国原子能出版传媒有限公司, 2011.
XU Mi. Fast reactor safety analysis[M]. China Atomic Energy Publishing & Media Co., LTD., 2011.
赵鹏程, 刘紫静, 于涛. 小型自然循环铅冷快堆无保护最热组件局部堵流瞬态分析[J]. 核动力工程, 2019, 40(1): 23–27. DOI: 10.13832/j.jnpe.2019.01.0023http://dx.doi.org/10.13832/j.jnpe.2019.01.0023.
ZHAO Pengcheng, LIU Zijing, YU Tao. Transient analysis on unprotected partial flow blockage of hottest fuel assembly for a small natural circulation lead-cooled fast reactor[J]. Nuclear Power Engineering, 2019, 40(1): 23–27. DOI: 10.13832/j.jnpe.2019.01.0023http://dx.doi.org/10.13832/j.jnpe.2019.01.0023.
Shi K L, Li S Z, Zhang X L, et al. Partial flow blockage analysis of the hottest fuel assembly in SNCLFR-100 reactor core[J]. Nuclear Science and Techniques, 2018, 29(1): 16. DOI: 10.1007/s41365-017-0351-3http://dx.doi.org/10.1007/s41365-017-0351-3.
Luo X, Cao L K, Feng W P, et al. Development of a subchannel code for blockage accidents of LMFRs based on the 3D fuel rod model[J]. Nuclear Science and Techniques, 2022, 33(3): 27. DOI: 10.1007/s41365-022-01010-4http://dx.doi.org/10.1007/s41365-022-01010-4.
Liu P, Chen X N, Rineiski A, et al. Transient analyses of the 400 MWth-class EFIT accelerator driven transmuter with the multi-physics code: SIMMER-III[J]. Nuclear Engineering and Design, 2010, 240(10): 3481–3494. DOI: 10.1016/j.nucengdes.2010.05.023http://dx.doi.org/10.1016/j.nucengdes.2010.05.023.
龚昊. 铅铋冷却快堆单盒组件堵流事故分析研究[D]. 合肥: 中国科学技术大学, 2014.
GONG Hao. Analysis of blockage accident for single assembly of LBE-cooled fast reactor[D]. Hefei: University of Science and Technology of China, 2014.
尧俊, 张熙司, 胡文军, 等. 铅铋冷却快堆堵流事故下堵块参数对流动传热的影响[J]. 核技术, 2018, 41(2): 020604. DOI: 10.11889/j.0253-3219.2018.hjs.41.020604http://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.020604.
YAO Jun, ZHANG Xisi, HU Wenjun, et al. Effect of block parameter on fluid flow and heat transfer in LBE-cooled fast reactor under blockage accident[J]. Nuclear Techniques, 2018, 41(2): 020604. DOI: 10.11889/j.0253-3219.2018.hjs.41.020604http://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.020604.
陈宝文, 邓坚, 凌煜凡, 等. 基于CFD的铅基快堆单盒燃料组件堵流事故分析[J]. 核动力工程, 2021, 42(4): 277–281. DOI: 10.13832/j.jnpe.2021.04.0277http://dx.doi.org/10.13832/j.jnpe.2021.04.0277.
CHEN Baowen, DENG Jian, LING Yufan, et al. Analysis of blockage accident of lead-based fast reactor single-box fuel assembly based on CFD[J]. Nuclear Power Engineering, 2021, 42(4): 277–281. DOI: 10.13832/j.jnpe.2021.04.0277http://dx.doi.org/10.13832/j.jnpe.2021.04.0277.
孙畅, 焦守华, 柴翔, 等.基于CFD方法的铅铋冷却燃料棒束的热工水力特性分析[J]. 原子能科学技术, 2020, 54(8): 1386-1394. DOI: 10.7538/yzk.2019.youxian.0652http://dx.doi.org/10.7538/yzk.2019.youxian.0652.
SUN Chang, JIAO Shouhua, CHAI Xiang, et al. Thermal hydraulic analysis of LBE-cooled rod bundle based on CFD method[J]. Atomic Energy Science and Technology, 2020, 54(8): 1386-1394. DOI: 10.7538/yzk.2019.youxian.0652http://dx.doi.org/10.7538/yzk.2019.youxian.0652.
Xia H, Wu Y, Tian W, et al. Development of thermal hydraulic analysis code of annular fuel under flow blockage condition[J]. Annals of Nuclear Energy, 2021, 151: 107962. DOI: 10.1016/j.anucene.2020.107962http://dx.doi.org/10.1016/j.anucene.2020.107962.
丁丽, 骆贝贝, 花晓, 等. 板状燃料元件流道堵塞事故预防与探测技术研究[J]. 核技术, 2020, 43(4): 040002. DOI: 10.11889/j.0253-3219.2020.hjs.43.040002http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.040002.
DING Li, LUO Beibei, HUA Xiao, et al. Research on prevention and detection technology of flow channel blockage accident of plate-type fuel elements[J]. Nuclear Techniques, 2020, 43(4): 040002. DOI: 10.11889/j.0253-3219.2020.hjs.43.040002http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.040002.
Wang Y J, Wang M J, Ju H T, et al. CFD simulation of flow and heat transfer characteristics in a 5×5 fuel rod bundles with spacer grids of advanced PWR[J]. Nuclear Engineering and Technology, 2020, 52(7): 1386-1395. DOI: 10.1016/j.net.2019.12.012http://dx.doi.org/10.1016/j.net.2019.12.012.
Guo Y, Wang G, Qian D, et al. Accident safety analysis of flow blockage in an assembly in the JRR-3M research reactor using system code RELAP5 and CFD code FLUENT[J]. Annals of Nuclear Energy, 2018, 122: 125-136. DOI: 10.1016/j.anucene.2018.08.031http://dx.doi.org/10.1016/j.anucene.2018.08.031.
杨勇. 基于SolidWorks的CFD前后处理软件的设计与实现[D]. 重庆: 重庆大学, 2008.
YANG Yong. Design and implement of a CFD pre/post process software based on SolidWorks[D]. Chongqing: Chongqing University, 2008.
魏君翰, 赵民富. 环形燃料棒束冷却剂流动的数值模拟研究[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 2019: 1311-1321. DOI: 10.26914/c.cnkihy.2019.047877http://dx.doi.org/10.26914/c.cnkihy.2019.047877.
WEI Junhan, ZHAO Minfu. Numerical simulation study on the flow of annular fuel rod bundle coolant[C]//16th National Conference on Thermal Fluids for Nuclear Reactors and Papers of Key Laboratory of Thermal Hydraulic Technology for Nuclear Reactors in 2019. 2019: 1311-1321. DOI: 10.26914/c.cnkihy.2019.047877http://dx.doi.org/10.26914/c.cnkihy.2019.047877.
杨云. 基于数值模拟的钠冷快堆燃料组件堵流事故分析[D]. 上海: 上海交通大学, 2019. DOI: 10.27307/d.cnki.gsjtu.2019.002014http://dx.doi.org/10.27307/d.cnki.gsjtu.2019.002014.
YANG Yun. Numerical simulation and analysis on flow blockage accident of fuel subassembly for sodium cooled fast reactor[D]. Shanghai: Shanghai Jiao Tong University, 2019. DOI: 10.27307/d.cnki.gsjtu.2019.002014http://dx.doi.org/10.27307/d.cnki.gsjtu.2019.002014.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构