浏览全部资源
扫码关注微信
中国电子科技集团公司 第五十八研究所无锡214035
邱一武,男,1993年出生,2019年于哈尔滨工业大学获硕士学位,工程师,主要从事抗辐射IC设计,宽禁带半导体器件辐射效应及可靠性分析
周昕杰,E-mail:zhouxinjie2000@sina.com
纸质出版日期:2024-12-15,
收稿日期:2024-07-09,
修回日期:2024-09-09,
移动端阅览
邱一武,董磊,殷亚楠等.增强型GaN HEMT器件5 MeV质子辐照试验研究[J].核技术,2024,47(12):120503.
QIU Yiwu,DONG Lei,YIN Yanan,et al.Experimental study on 5 MeV proton irradiation of enhancement-mode GaN HEMT devices[J].NUCLEAR TECHNIQUES,2024,47(12):120503.
邱一武,董磊,殷亚楠等.增强型GaN HEMT器件5 MeV质子辐照试验研究[J].核技术,2024,47(12):120503. DOI: 10.11889/j.0253-3219.2024.hjs.47.120503. CSTR: 32193.14.hjs.CN31-1342/TL.2024.47.120503.
QIU Yiwu,DONG Lei,YIN Yanan,et al.Experimental study on 5 MeV proton irradiation of enhancement-mode GaN HEMT devices[J].NUCLEAR TECHNIQUES,2024,47(12):120503. DOI: 10.11889/j.0253-3219.2024.hjs.47.120503. CSTR: 32193.14.hjs.CN31-1342/TL.2024.47.120503.
氮化镓器件凭借优异的性能在抗辐照应用领域备受关注,为探究不同结构的氮化镓器件抗质子辐照能力,开展了对增强型Cascode级联结构和P-GaN栅结构GaN高电子迁移率晶体管(High Electron Mobility Transistor,HEMT)器件的5 MeV质子辐照试验,分析器件电学特性退化规律,并明确其质子辐照效应损伤机制。试验发现,质子辐照注量越大,Cascode结构器件阈值电压负漂越严重,同时饱和漏极电流增加越显著,当质子注量大于1×10
13
p∙cm
-2
时,器件电学特性退化程度开始降低。对于P-GaN栅结构GaN HEMT而言,辐照后电学特性退化规律与Cascode结构器件截然相反,且退化程度明显小于Cascode结构器件,表明增强型Cascode结构器件对质子辐照更加敏感。结合低频噪声测试,发现随辐照注量的增加,Cascode结构器件噪声功率谱密度先增加后保持稳定,其变化规律与电学特性退化情况相吻合。分析认为,5 MeV质子辐照诱导发生电离损伤使Cascode结构器件内部级联的Si基金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor Field Effect Transistor,MOSFET)栅氧化层产生了更多的氧化物陷阱电荷与界面态陷阱电荷,是Cascode结构器件对质子辐照敏感的主
要原因。研究结果对GaN功率器件加固设计和航天应用器件选型具有一定的参考价值。
Background
2
GaN-based high electron mobility transistor (HEMT) has been widely used in satellite communication
space station and other fields due to its high thermal conductance
high breakdown voltage and radiation resistance. However
the existence of a large number of high-energy particles in space will induce defects in the device
resulting in the performance degradation or even failure of the device
which seriously threatens the reliability of the device.
Purpose
2
This study aims to investigate the anti-proton irradiation damage ability of enhancement mode gallium nitride devices with different structures
analyze the degradation rule of the devices' electrical characteristics after proton irradiation
and clarify the damage mechanism of proton irradiation.
Methods
2
First of all
the enhancement mode Cascode structure devices manufactured by Transphorm corporation and P-GaN gate structure GaN HEMTs manufactured by Innoscience corporation were taken as irradiation samples. Then
a 5 MeV proton irradiation experiment with irradiation dose of 2×10
12
p∙cm
-2
1×10
13
p∙cm
-2
1×10
14
p∙cm
-2
was carried out using the EN-18 serial electrostatic accelerator at Peking university for Cascode structure samples whilst only 1×10
13
p∙cm
-2
for P-GaN gate structure samples. The irradiation was carried out at room temperature
and the devices were not biased during the experiment. After each irradiation dose
drain current (
I
ds
)
threshold voltage (
V
th
)
and gate leakage current (
I
gs
) were electrically characterized in all the samples. Finally
Kesight B1500A semiconductor parameter tester and LFN-1000 low-frequency noise testing system were employed to test the elec
trical characteristics and low-frequency noise of these samples before and after irradiation.
Results
2
The experimental results show that the threshold voltage negative drift of the Cascode device becomes more serious with the increase of proton irradiation dose
and the saturation drain current increases significantly. When the irradiation dose reaches 1×10
13
p∙cm
-2
the degradation of the electrical characteristics of the device begins to slow down. For P-GaN gate structure HEMT devices
the degradation law of electrical properties after irradiation is completely opposite to that of Cascode structure devices
and the degradation degree is significantly smaller than that of Cascode structure devices
indicating that Cascode structure devices are more sensitive to proton irradiation. Low-frequency noise test results show that the noise power spectral density of the device increases first and then tends to be stable with the increase of the irradiation dose
and its change law is consistent with the degradation of electrical characteristics.
Conclusions
2
Results of this study demonstrate that the ionization damage effect induced by 5 MeV proton irradiation produces more oxide trap charges and interfacial trap charges in the cascade Si MOSFET gate oxide layer of Cascode structure device
which is the main reason for its sensitivity to proton irradiation. This study provides a certain reference value for the reinforcement design of GaN power devices and the selection of aerospace devices.
增强型GaN HEMT器件质子辐照电学特性低频噪声损伤机制
Enhancement-mode GaN HEMTsProton-irradiationElectrical characteristicsLow frequency noiseDamage mechanism
Hu X W, Karmarkar A P, Jun B, et al. Proton-irradiation effects on AlGaN/AlN/GaN high electron mobility transistors[J]. IEEE Transactions on Nuclear Science, 2003, 50(6): 1791–1796. DOI: 10.1109/TNS.2003. 820792http://dx.doi.org/10.1109/TNS.2003.820792.
Carbone M, Hirche K, Morand S, et al. An overview of GaN FET technology, reliability, radiation and market for future space application[C]. 2019 European Space Power Conference (ESPC). Juan-les-Pins, France. IEEE, 2019: 1–4. DOI: 10.1109/ESPC.2019.8932067http://dx.doi.org/10.1109/ESPC.2019.8932067.
Khanna V K. Extreme-temperature and harsh-environment electronics: physics, technology and applications[M]. Bristol, UK: IOP Publishing, 2017. DOI: 10.1088/978-0-7503-1155-7http://dx.doi.org/10.1088/978-0-7503-1155-7.
Kanekal S, Baker D, Sibeck D. Recent advances in our understanding of the Earth’s Radiation Belts[C]. 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA). Granada, Spain. IEEE, 2019: 1345–1348. DOI: 10.1109/ICEAA.2019.8879310http://dx.doi.org/10.1109/ICEAA.2019.8879310.
Liu G P, Wang X, Li M N, et al. Effects of high-energy proton irradiation on separate absorption and multiplication GaN avalanche photodiode[J]. Nuclear Science and Techniques, 2018, 29(10): 139. DOI: 10.1007/s41365-018-0480-3http://dx.doi.org/10.1007/s41365-018-0480-3.
Hu X W, Choi B K, Barnaby H J, et al. The energy dependence of proton-induced degradation in AlGaN/GaN high electron mobility transistors[J]. IEEE Transactions on Nuclear Science, 2004, 51(2): 293–297. DOI: 10.1109/TNS.2004.825077http://dx.doi.org/10.1109/TNS.2004.825077.
Lo C F, Chang C Y, Chu B H, et al. Proton irradiation effects on AlN/GaN high electron mobility transistors[J]. Journal of Vacuum Science & Technology B, 2010, 28(5): L47–L51. DOI: 10.1116/1.3482335http://dx.doi.org/10.1116/1.3482335.
Kim H Y, Kim J, Liu L, et al. Effects of proton irradiation energies on degradation of AlGaN/GaN high electron mobility transistors[J]. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2012, 30(1): 012202. DOI: 10.1116/1.3676034http://dx.doi.org/10.1116/1.3676034.
Zhang D L, Cheng X H, Shen L Y, et al. Influence of poly-AlN passivation on the performance improvement of 3-MeV proton-irradiated AlGaN/GaN MIS-HEMTs[J]. IEEE Transactions on Nuclear Science, 2019, 66(10): 2215–2219. DOI: 10.1109/TNS.2019.2941974http://dx.doi.org/10.1109/TNS.2019.2941974.
Keum D M, Cha H Y, Kim H. Proton bombardment effects on normally- off AlGaN/GaN-on-Si recessed MIS heterostructure FETs[J]. IEEE Transactions on Nuclear Science, 2015, 62(6): 3362–3368. DOI: 10.1109/TNS. 2015.2495209http://dx.doi.org/10.1109/TNS.2015.2495209.
白如雪, 郭红霞, 张鸿, 等. 增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究[J]. 物理学报, 2023, 72(1): 44–50. DOI: 10.7498/aps.72.20221617http://dx.doi.org/10.7498/aps.72.20221617.
BAI Ruxue, GUO Hongxia, ZHANG Hong, et al. High-energy proton radiation effect of Gallium nitride power device with enhanced Cascode structure[J]. Acta Physica Sinica, 2023, 72(1): 44–50. DOI: 10.7498/aps.72.20221617http://dx.doi.org/10.7498/aps.72.20221617.
Wan X, Baker O K, McCurdy M W, et al. Low energy proton irradiation effects on commercial enhancement mode GaN HEMTs[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 253–257. DOI: 10.1109/TNS. 2016.2621065http://dx.doi.org/10.1109/TNS.2016.2621065.
Lee J H, Kim D S, Kim J G, et al. Effect of gate dielectrics on characteristics of high-energy proton-irradiated AlGaN/GaN MISHEMTs[J]. Radiation Physics and Chemistry, 2021, 184(1): 109473. DOI: 10.1016/j.radphyschem.2021.109473http://dx.doi.org/10.1016/j.radphyschem.2021.109473.
Huang X C, Liu Z Y, Lee F C, et al. Characterization and enhancement of high-voltage cascode GaN devices[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 270–277. DOI: 10.1109/TED.2014.2358534http://dx.doi.org/10.1109/TED.2014.2358534.
Jones E A, Wang F F, Costinett D. Review of commercial GaN power devices and GaN-based converter design challenges[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 707–719. DOI: 10.1109/JESTPE.2016.2582685http://dx.doi.org/10.1109/JESTPE.2016.2582685.
Roccaforte F, Greco G, Fiorenza P, et al. An overview of normally-off GaN-based high electron mobility transistors[J]. Materials, 2019, 12(10): 1599. DOI: 10.3390/ma12101599http://dx.doi.org/10.3390/ma12101599.
Wu H, Fu X J, Luo J, et al. Total ionizing dose effects on the threshold voltage of GaN cascode devices[J]. Micromachines, 2023, 14(10): 1832. DOI: 10.3390/mi14101832http://dx.doi.org/10.3390/mi14101832.
Faruk M G, Wilkins R, Dwivedi R C, et al. Proton and neutron radiation effects studies of MOSFET transistors for potential deep-space mission applications[C]. 2012 IEEE Aerospace Conference. Big Sky, MT, USA. IEEE, 2012: 1–13. DOI: 10.1109/AERO.2012.6187016http://dx.doi.org/10.1109/AERO.2012.6187016.
Seehra S S, Slusark W J. The effect of operating conditions on the radiation resistance of VDMOS power FETs[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 1559–1563. DOI: 10.1109/TNS.1982.4336404http://dx.doi.org/10.1109/TNS.1982.4336404.
唐常钦, 王多为, 龚敏, 等. SiC MOSFET伽马辐照效应及静态温度特性研究[J]. 电子与封装, 2021, 21(8): 080402. DOI: 10.16257/j.cnki.1681-1070.2021.0811http://dx.doi.org/10.16257/j.cnki.1681-1070.2021.0811.
TANG Changqin, WANG Duowei, GONG Min, et al. Study on the static temperature characteristics of SiC MOSFET after gamma irradiation[J]. Electronics & Packaging, 2021, 21(8): 080402. DOI: 10.16257/j.cnki.1681-1070.2021.0811http://dx.doi.org/10.16257/j.cnki.1681-1070.2021.0811.
Sun X, Saadat O I, Chen J, et al. Total-ionizing-dose radiation effects in AlGaN/GaN HEMTs and MOS-HEMTs[J]. IEEE Transactions on Nuclear Science, 2013, 60(6): 4074–4079. DOI: 10.1109/TNS.2013.2278314http://dx.doi.org/10.1109/TNS.2013.2278314.
陈睿, 梁亚楠, 韩建伟, 等. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究[J]. 物理学报, 2021, 70(11): 116102. DOI: 10.7498/aps.70.20202028http://dx.doi.org/10.7498/aps.70.20202028.
CHEN Rui, LIANG Yanan, HAN Jianwei, et al. Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays[J]. Acta Physica Sinica, 2021, 70(11): 116102. DOI: 10.7498/aps.70.20202028http://dx.doi.org/10.7498/aps.70.20202028.
罗尹虹, 郭红霞, 张科营, 等. GaN HEMT器件电子辐照效应研究[J]. 核技术, 2011, 34(7): 507–511.
LUO Yinhong, GUO Hongxia, ZHANG Keying, et al. Electron beam irradiation effect on GaN HEMT[J]. Nuclear Techniques, 2011, 34(7): 507–511.
Alexander S H, Miaomiao J, Blair R T. Atomic displacement threshold energies and defect generation in GaN, AlN, and AlGaN: A high-throughput molecular dynamics investigation[J]. Applied Physics Letters, 2024, 124(15): 152107. DOI: 10.1063/5.0190371http://dx.doi.org/10.1063/5.0190371.
Xiao H Y, Gao F, Zu X T, et al. Threshold displacement energy in GaN: Ab initio molecular dynamics study[J]. Journal of Applied Physics, 2009, 105(12): 334–338. DOI: 10.1063/1.3153277http://dx.doi.org/10.1063/1.3153277.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构