浏览全部资源
扫码关注微信
1.三峡大学 机械与动力学院 宜昌 443002
2.三峡大学 理学院 宜昌 443002
3.先进核能技术设计与安全教育部重点实验室 衡阳 421200
龚瀚源,男,2000年出生,2021年毕业于三峡大学,现为硕士研究生,研究领域为反应堆物理
张彬航,E-mail:evanustc@mail.ustc.edu.cn
纸质出版日期:2024-10-15,
收稿日期:2023-09-19,
修回日期:2024-02-20,
移动端阅览
龚瀚源,张彬航,张永红等.基于C5G7-MOX的中子输运计算方法比较及MOC参数敏感性初步分析[J].核技术,2024,47(10):100601.
GONG Hanyuan,ZHANG Binhang,ZHANG Yonghong,et al.Comparison of neutron transport calculation methods based on C5G7-MOX and preliminary analysis of sensitivity of MOC parameters[J].NUCLEAR TECHNIQUES,2024,47(10):100601.
龚瀚源,张彬航,张永红等.基于C5G7-MOX的中子输运计算方法比较及MOC参数敏感性初步分析[J].核技术,2024,47(10):100601. DOI: 10.11889/j.0253-3219.2024.hjs.47.100601.
GONG Hanyuan,ZHANG Binhang,ZHANG Yonghong,et al.Comparison of neutron transport calculation methods based on C5G7-MOX and preliminary analysis of sensitivity of MOC parameters[J].NUCLEAR TECHNIQUES,2024,47(10):100601. DOI: 10.11889/j.0253-3219.2024.hjs.47.100601.
特征线方法(Method of Characteristics,MOC)因其具备强大的几何处理能力,且在计算过程中亦能兼顾计算成本和计算精度,被广泛应用于高保真数值模拟计算中。常见的中子输运计算方法除MOC外,还包括碰撞概率法(Collision Probability method,CP)和界面流法(Interface Current method,IC)等。本文从方法理论以及数值计算两方面将MOC、CP和IC进行比较分析,评估其在pin-by-pin计算中的能力。同时在MOC计算中,不同的参数选择会对计算成本和计算精度产生影响,因此有必要进行敏感性分析以寻求最佳参数。本文首先将三种计算方法从原理上进行比较分析,再基于2D C5G7-MOX基准题完成了数值计算及MOC参数敏感性初步分析。计算结果表明:MOC在计算精度、计算效率和内存开销上均优于CP和IC。MOC的计算耗时和内存开销分别为23.9 min和37.5 MB,与参考解的相对误差仅为6.04×10
-4
。而CP和IC的计算耗时分别为MOC的56.7倍和15.6倍,内存开销分别为MOC的407.7倍和32.8倍。进一步通过参数敏感性分析发现:网格划分对计算内存开销以及计算时间的影响最大,而极角的选择对计算精度的影响最大,并且给出一组综合优化建议参数:网格划分6×6,极角为GAUS且数目为2,方位角个数为30。该组参数的计算耗时为45.4 min,内存开销为264.7 MB,相对误差为5.9×10
-5
,归一化后的栅元均方根误差为0.002 55。
Background
2
The Method of Characteristics (MOC) is widely applied to high-fidelity numerical simulations due to its robust geometric processing capabilities
as well as its ability to balance computational costs and accuracy during calculations. In addition to MOC
common neutron transport calculation methods also include the Collision Probability method (CP) and the Interface Current method (IC). In MOC calculation
different parameter selections will lead to different values of calculation cost and accuracy.
Purpose
2
This paper aims to evaluate the ability of MOC
CP and IC methods for pin-by-pin calculation
and conduct sensitivity analysis to find the best parameter setting for MOC method.
Methods
2
The three aforementioned calculation methods were compared from the perspective of theory and numerical calculation. Subsequently
numerical calculation and preliminary analysis of the sensitivity of MOC parameters were conducted based on the 2D C5G7-MOX reference problem.
Results
2
Numerical calculation results show that the computation time and memory cost incur by the MOC are 23.9 min and 37.5 MB
respectively
and the relative error between the MOC results and reference solutions is only 6.04×10
-4
. The computing times of the CP and IC methods are 56.7 times and 15.6 times that of the MOC
and the memory costs are 407.7 times and 32.8 times that of the MOC
respectively. As a result of the sensitivity analysis of MOC parameters
the following set of parameters is suggested: a grid division of 6×6
a pole angle of GAUS
a pole number of 2
and an azimuth angle of 30°. The calculation time and the memory cost of this set of parameters are 45.4 min and 264.7 MB
respectively
with the relative error of 5.9×10
-5
and the normalized RMS error of 0.002 55.
Conclusions
2
The results of this study indicate that the MOC is superior to the CP and IC methods in accuracy
efficiency
and memory cost
and the grid division of MOC has the greatest influence on the calculation memory cost and calculation time whereas the choice of polar angle has the greatest influence on the calculation accuracy. With its powerful geometric processing ability and consideration of the calculation cost and accuracy
the MOC is more widely used in high-fidelity numerical simulation for neutron transport calculation.
特征线方法2D C5G7-MOX方法比较敏感性分析DRAGON
Method of characteristics2D C5G7-MOXComparison of methodsSensitivity analysisDRAGON
谢仲生, 邓力. 中子输运理论数值计算方法[M]. 西安: 西北工业大学出版社, 2005.
XIE Zhongsheng, DENG Li. Numerical calculation method of neutron transport theory[M]. Xi'an: Northwestern Polytechnical University Press, 2005.
Amouyal A, Benoist P, Horowitz J J. New method for determining the thermal utilization factor in a unit cell[J]. Nuclear Energy, 1957, 6: 79. 10.1016/0891-3919(57)90183-3http://dx.doi.org/10.1016/0891-3919(57)90183-3
曹良志. 近代反应堆物理分析[M]. 北京: 中国原子能出版社, 2017: 93.
CAO Liangzhi. Analysis of modern reactor physics[M]. Beijing: China Atomic Energy Press, 2017: 93.
Coste M, Tellier H, Ribon P, et al. New Improvements in the self-shielding formalism of the apollo-2 code, technical report[R]. CEA Centre d'Etudes de Saclay, 1993.
Kulikowska T. WIMSD-5B: a neutronic code for standard lattice physics analysis[R]. Distributed by NEA Data Bank. Saclay, France, 1996.
Okumura K, Kugo T, Nakano Y, et al. Development of modular reactor analysis code system MOSRA, Preprints L46[R]. 2008 Fall Meeting of the Atomic Energy Society of Japan, 2008.
Askew Jr. A characteristics formulation of the neutron transport equation in complicated geometries[R]. United Kingdom: United Kingdom Atomic Energy Authority, 1972.
梁亮. 基于特征线方法的2D/1D及2D/3D耦合中子输运计算方法研究[D]. 西安: 西安交通大学, 2017.LIANGLiang. Research on 2D/1D and 2D/3D coupled neutron transport calculation methods based on eigenline method[D]. Xi'an: Xi'an Jiaotong University, 2017.
Hebert A. DRAGON5 and DONJON5, the contribution of Ecole Polytechnique de Montreal to the SALOME platform[J]. Annals of Nuclear Energy, 2016, 87: 12-20. 10.1016/j.anucene.2015.02.033http://dx.doi.org/10.1016/j.anucene.2015.02.033
Le Tellier R, Hebert A. On the integration scheme along a trajectory for the characteristics method[J]. Annals of Nuclear Energy, 2006, 33(14-15): 1260-1269. 10.1016/j.anucene.2006.07.010http://dx.doi.org/10.1016/j.anucene.2006.07.010
Hsiao M Y, Wheeler J K, de la Hoz C. Application of CASMO-4/MICROBURN-B2 methodology to mixed cores with westinghouse optima2 fuel[J]. Nuclear Science and Engineering, 2011, 167(3): 230-241. 10.13182/nse10-18http://dx.doi.org/10.13182/nse10-18
Rhodes J L D, Smith K. CASMO-5/CASMO-5M - a fuel assembly burnup program methodology manual[R]. Report S S, Ed. 2008.
Lindley B A, Hosking J G, Smith P J, et al. Current status of the reactor physics code WIMS and recent developments[J]. Annals of Nuclear Energy, 2017, 102: 148-157. 10.1016/j.anucene.2016.09.013http://dx.doi.org/10.1016/j.anucene.2016.09.013
朱成林. 基于MOC的堆芯计算方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
ZHU Chenglin. Research on core calculation method based on MOC[D]. Harbin: Harbin Engineering University, 2015.
刘紫静, 于涛, 谢金森, 等. 基于DRAGON程序的多种中子输运计算方法对比分析[J]. 中国科技论文, 2015, 10(23): 2728–2733. DOI: 10.3969/j.issn.2095-2783.2015.23.008http://dx.doi.org/10.3969/j.issn.2095-2783.2015.23.008.
LIU Zijing, YU Tao, XIE Jinsen, et al. Neutron transport calculation methods comparative analysis based on DRAGON code[J]. China Sciencepaper, 2015, 10(23): 2728–2733. DOI: 10.3969/j.issn.2095-2783.2015.23.008http://dx.doi.org/10.3969/j.issn.2095-2783.2015.23.008.
Mira M, El Hajjaji O, Jai O, et al. Derivation of optimal process MOC parameters and analysis of the 2D C5G7 MOX benchmark using DRAGON5 code[J]. Nuclear Engineering and Design, 2022, 388: 111613. DOI: 10. 1016/j.nucengdes.2021.111613http://dx.doi.org/10.1016/j.nucengdes.2021.111613.
吴宏春. 中子输运方程确定论数值方法[M]. 北京: 中国原子能出版社, 2018: 65.
WU Hongchun. Numerical method for determining neutron transport equation[M]. Beijing: China Atomic Energy Press, 2018: 65.
谢仲生. 中子输运理论数值计算方法[M]. 西安: 西安交通大学出版社, 2022: 158.
XIE Zhongsheng. Theoretical numerical calculation method for neutron transport[M]. Xi'an: Xi'an Jiaotong University Press, 2022: 158.
Marleau G, Hebert A, Roy R. A user guide for DRAGON version 4, Report IGE-294[Z]. Montr′eal: Institut de génie nucléaire, école Polytechnique deMontréal, 2015.
毕光文, 司胜义. DRAGON程序用于压水堆燃料组件计算的有效性验证与分析[C]. 第十三届反应堆数值计算与粒子输运学术会议暨2010年反应堆物理会议论文集. 西安: 第十三届反应堆数值计算与粒子输运学术会议, 2010: 1-8.
BI Guangwen, SI Shengyi. Validation and analysis of calculations for PWR assemblies with lattice code DRAGON[C]. Proceedings of the 13th Reactor Numerical Computation and Particle Transport Conference and the 2010 Reactor Physics Conference. Xi'an: 13th Academic Conference on Reactor Numerical Computation and Particle Transport, 2010: 1-8.
郝鹏飞. 基于OpenMC的空间核反应堆临界及安全分析[D]. 江西: 东华理工大学, 2022. 10.1115/icone29-90636http://dx.doi.org/10.1115/icone29-90636
HAO Pengfei. Criticality and safety analysis of space nuclear reactor based on OpenMC[D]. Jiangxi: East China University of Technology, 2022. 10.1115/icone29-90636http://dx.doi.org/10.1115/icone29-90636
Romano P K, Horelik N E, Herman B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90–97. DOI: 10.1016/j.anucene.2014.07.048http://dx.doi.org/10.1016/j.anucene.2014.07.048.
沈芷睿, 孙启政, 何东豪, 等. 基于BEAVRS基准题高保真建模的OpenMC程序和NECP-X程序的对比验证[J]. 核技术, 2022, 45(1): 010602. DOI: 10.11889/j.0253-3219.2022.hjs.45.010602http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.010602.
SHEN Zhirui, SUN Qizheng, HE Donghao, et al. Comparison and verification of NECP-X and OpenMC using high-fidelity BEAVRS benchmark models[J]. Nuclear Techniques, 2022, 45(1): 010602. DOI: 10.11889/j.0253-3219.2022.hjs.45.010602http://dx.doi.org/10.11889/j.0253-3219.2022.hjs.45.010602.
吴宏春. 中子输运理论及其数值方法[M]. 西安: 西安交通大学出版社, 2007: 34.
WU Hongchun. Neutron transport theory and numerical methods[M]. Xi'an: Xi'an Jiaotong University Press, 2007: 34.
刘萍萍, 吴宏春. 基于三角形网格的穿透概率方法研究[J]. 核动力工程, 2006, 27(5): 12–18, 41. DOI: 10.3969/j.issn.0258-0926.2006.05.003http://dx.doi.org/10.3969/j.issn.0258-0926.2006.05.003.
LIU Pingping, WU Hongchun. Study of transmission probability method based on triangle meshes[J]. Nuclear Power Engineering, 2006, 27(5): 12–18, 41. DOI: 10.3969/j.issn.0258-0926.2006.05.003http://dx.doi.org/10.3969/j.issn.0258-0926.2006.05.003.
刘国明, 吴宏春. 基于三棱柱网格的穿透概率方法研究[J]. 核动力工程, 2008, 29(4): 24–30.
LIU Guoming, WU Hongchun. Transmission probability method based on triangular-z mesh[J]. Nuclear Power Engineering, 2008, 29(4): 24–30.
马逸尘, 高伟, 唐富初, 等. 三维中子积分输运方程的数值解: 中子碰撞概率的计算[J]. 工程数学学报, 1984, 1(1): 119–128.
MA Yichen, GAO Wei, TANG Fuchu, et al. Numerical solution of three-dimension integral transport equation: calculation of neutron collision probabilities[J]. Chinese Journal of Engineering Mathematics, 1984, 1(1): 119–128.
Marleau G, Hébert A, Roy R, et al. A user guide for dragon version5[R]. Institut de Génie Nucléaire Département de Génie Mécanique École Polytechnique de Montréal, 2021.
Yamamoto A, Tabuchi M, Sugimura N, et al. Derivation of optimum polar angle quadrature set for the method of characteristics based on approximation error for the bickley function[J]. Journal of Nuclear Science and Technology, 2007, 44(2): 129–136. DOI: 10.1080/18811248.2007.9711266http://dx.doi.org/10.1080/18811248.2007.9711266.
0
浏览量
39
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构