浏览全部资源
扫码关注微信
上海交通大学 核科学与工程学院上海200240
季旭,男,1999年出生,2021年毕业于哈尔滨工程大学,现为硕士研究生,研究领域为核反应堆多物理场耦合
刘晓晶,E-mail:xiaojingliu@sjtu.edu.cn
网络出版日期:2024-11-27,
收稿日期:2023-11-29,
修回日期:2024-04-25,
移动端阅览
季旭, 柴翔, 张乐福, 等. 基于氧化腐蚀特性的铅铋堆单棒核-热-材耦合研究[J/OL]. 核技术, 2024,XXXXXX
JI Xu, CHAI Xiang, ZHANG Lefu, et al. Neutronics -thermal-hydraulics-material coupling study of lead-bismuth cooled reactor single rod based on oxidative corrosion characteristics. [J/OL]. NUCLEAR TECHNIQUES, 2024,XXXXXX
铅铋堆的氧化腐蚀受温度、氧浓度、时间等多因素影响,同时氧化层的生长也改变了堆芯热工水力和中子物理参数,因此,研究铅铋堆的氧化腐蚀场、热工水力场和中子物理场的耦合作用对铅铋堆应用有重要意义。本工作基于面向对象的多物理场仿真环境(Multiphysics Object-Ori1ented Simulation Environment,MOOSE)搭建了核-热-材多物理场耦合框架,开展了单棒在基准工况下的核-热-材耦合分析,并研究了氧浓度对关键耦合参数的影响。结果表明:基准工况下氧化腐蚀10 000 h后氧化层平均厚度约为10 μm,燃料最大温升为16 K,
k
inf
下降10
-4
;氧浓度升高可以极有效地抑制磁铁矿溶解,但是对Fe-Cr尖晶石生长的促进作用较小。
Background
2
Liquid lead-bismuth eutectic (LBE) corrosion and dissolution of structural materials pose significant challenges in the application of lead-bismuth-cooled fast reactors (LFRs). The use of oxygen as an inhibitor emerges as a promising approach to mitigate the corrosion of structural materials by liquid LBE. The oxidative corrosion in LFRs is influenced by various physical parameters within the reactor
including temperature
oxygen concentration
and time. Concurrently
the growth of the oxide layer on the cladding surface exacerbates the heat transfer between the cladding and the coolant
thereby influencing the thermal-hydraulic and neutron physics parameters of the core. Understanding the corrosion protection of structural materials and multi-physics characteristics is crucial issue for LFRs.
Purpose
2
This study aims to investigate the coupled mechanisms of neutron physics
thermal-hydraulics
and oxidative corrosion
along with the distribution of the oxide layer in lead-bismuth reactors.
Methods
2
A neutronics-thermal-hydraulics-material coupling framework was developed to investigate the variations in multi-physics parameters and oxide layer distribution in the LFR fuel rod under oxidative corrosion conditions. First of all
based on the Multiphysics Object-Oriented Simulation Environment (MOOSE)
the framework was developed to couple three modules: neutron physics
thermal-hydraulics
and oxidative corrosion
and conduct simulation calculations. Thereafter
various lead-bismuth reactor oxide layer growth-removal models were encompassed into a MOOSE-based oxidative corrosion module
named Seal
and the Martinelli model was adopted in subsequent simulations after comparison with experimental values. Then
the neutron physics module was solved by the open-source neutron diffusion equation solver Moltres and the thermal-hydraulics module calculation was performed by MOOSE's Navier-Stokes and Heat Conduction modules. Two coupling relationships in the coupling framework
i.e.
(1) the neutron physics module for transferring power distribution to the thermal-hydraulics module
and the thermal-hydraulics module transferring temperature distribution to the neutron physics module; (2) the thermal-hydraulics module transferring temperature field and flow field to the oxidative corrosion module
and the oxidative corrosion module transferring oxide layer thickness distribution to the thermal-hydraulics module
were investigated. Finally
the approach of simultaneously solving the coupled equations under the same mesh was employed for coupled calculations
with the control equations of the three modules solved simultaneously to achieve synchronized convergence of physical quantities. And the developed coupled framework was applied to perform benchmark calculations and sensitivity analysis of oxygen concentration for a lead-bismuth reactor fuel rod.
Results
2
The results indicate that: (1) after 10 000 h of oxidative corrosion under benchmark conditions
the average thickness of the oxide layer is approximately 10 μm
the maximum fuel temperature rise is 16 K
and keff decreases by 10
-4
; (2) an increase in oxygen concentration effectively inhibits magnetite dissolution but has a relatively minor promoting effect on the growth of Fe-Cr spinel.
Conclusions
2
This study demonstrates that the increase in oxygen concentration has a positive effect on the protection and self-healing ability of the oxide layer. It has both theoretical and practical significance for the development
design
and safety evaluation of LFR in China.
核-热-材耦合氧化腐蚀铅铋堆面向对象的多物理场仿真环境
Neutronics -Thermal-Hydraulics-Material couplingOxidation corrosionLead-Bismuth cooled reactorMultiphysics object-oriented simulation environment (MOOSE)
Mylonakis A G, Varvayanni M, Catsaros N, et al. Multi-physics and multi-scale methods used in nuclear reactor analysis[J]. Annals of Nuclear Energy, 2014, 72: 104–119. DOI: 10.1016/j.anucene.2014.05.002http://dx.doi.org/10.1016/j.anucene.2014.05.002.
Zhang J S, Li N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1–3): 351–377. DOI: 10.1016/j.jnucmat. 2007.06.019http://dx.doi.org/10.1016/j.jnucmat.2007.06.019.
Bonifetto R, Dulla S, Ravetto P, et al. A full-core coupled neutronic/thermal-hydraulic code for the modeling of lead-cooled nuclear fast reactors[J]. Nuclear Engineering and Design, 2013, 261: 85–94. DOI: 10.1016/j.nucengdes.2013.03.030http://dx.doi.org/10.1016/j.nucengdes.2013.03.030.
Shen Y O, Peng S N, Yan M Y, et al. Analytical study of heat transfer for liquid metals in a turbulent tube flow[J]. Nuclear Engineering and Design, 2021, 373: 111030. DOI: 10.1016/j.nucengdes.2020.111030http://dx.doi.org/10.1016/j.nucengdes.2020.111030.
Feng W P, Zhang X, Cao L K, et al. Development of oxygen/corrosion product mass transfer model and oxidation-corrosion model in the lead-alloy cooled reactor core[J]. Corrosion Science, 2021, 190: 109708. DOI: 10.1016/j.corsci.2021.109708http://dx.doi.org/10.1016/j.corsci.2021.109708.
Luo X, Wang C, Zou Z R, et al. Development and application of a multi-physics and multi-scale coupling program for lead-cooled fast reactor[J]. Nuclear Science and Techniques, 2022, 33(2): 18. DOI: 10.1007/s41365-022-01008-yhttp://dx.doi.org/10.1007/s41365-022-01008-y.
Lu D S, Wang C, Wang C L, et al. Numerical simulation of corrosion phenomena in oxygen-controlled environment for a horizontal lead-bismuth reactor core[J]. Journal of Nuclear Materials, 2023, 574: 154195. DOI: 10.1016/j.jnucmat.2022.154195http://dx.doi.org/10.1016/j.jnucmat.2022.154195.
Gaston D, Newman C, Hansen G, et al. MOOSE: a parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2009, 239(10): 1768–1778. DOI: 10.1016/j.nucengdes. 2009.05.021http://dx.doi.org/10.1016/j.nucengdes.2009.05.021.
Lindsay A, Ridley G, Rykhlevskii A, et al. Introduction to Moltres: an application for simulation of Molten Salt Reactors[J]. Annals of Nuclear Energy, 2018, 114: 530–540. DOI: 10.1016/j.anucene.2017.12.025http://dx.doi.org/10.1016/j.anucene.2017.12.025.
Park S M, Huff K D. Multiphysics benchmark results from moltres[J]. Transactions of the American Nuclear Society, 2021, 124(1): 536-539. DOI: 10.13182/T124-35136http://dx.doi.org/10.13182/T124-35136.
Park S M, Munk M. Verification of moltres for multiphysics simulations of fast-spectrum molten salt reactors[J]. Annals of Nuclear Energy, 2022, 173: 109111. DOI: 10.1016/j.anucene.2022.109111http://dx.doi.org/10.1016/j.anucene.2022.109111.
Peterson J W, Lindsay A D, Kong F D. Overview of the incompressible Navier-Stokes simulation capabilities in the MOOSE framework[J]. Advances in Engineering Software, 2018, 119: 68–92. DOI: 10.1016/j.advengsoft. 2018.02.004http://dx.doi.org/10.1016/j.advengsoft.2018.02.004.
Zhang J S. Long-term behaviors of oxide layer in liquid lead-bismuth eutectic (LBE), Part I: model development and validation[J]. Oxidation of Metals, 2013, 80(5): 669–685. DOI: 10.1007/s11085-013-9450-7http://dx.doi.org/10.1007/s11085-013-9450-7.
Zhang J S. Long-term behaviors of oxide layer in liquid lead-bismuth eutectic (LBE), Part II: model applications[J]. Oxidation of Metals, 2014, 81(5): 597–615. DOI: 10.1007/s11085-014-9469-4http://dx.doi.org/10.1007/s11085-014-9469-4.
Steiner H, Schroer C, Voss Z, et al. Modeling of oxidation of structural materials in LBE systems[J]. Journal of Nuclear Materials, 2008, 374(1–2): 211–219. DOI: 10.1016/j.jnucmat.2007.07.022http://dx.doi.org/10.1016/j.jnucmat.2007.07.022.
Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I)[J]. Corrosion Science, 2008, 50(9): 2523–2536. DOI: 10.1016/j.corsci.2008.06.050http://dx.doi.org/10.1016/j.corsci.2008.06.050.
Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470 ℃ (Part II)[J]. Corrosion Science, 2008, 50(9): 2537–2548. DOI: 10.1016/j.corsci. 2008.06.051http://dx.doi.org/10.1016/j.corsci.2008.06.051.
Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549–2559. DOI: 10.1016/j.corsci.2008.06.049http://dx.doi.org/10.1016/j.corsci.2008.06.049.
Martinelli L, Balbaud-Célérier F. Modelling of the oxide scale formation on Fe-Cr steel during exposure in liquid lead-bismuth eutectic in the 450–600 ℃ temperature range[J]. Materials and Corrosion, 2011, 62(6): 531–542. DOI: 10.1002/maco.201005871http://dx.doi.org/10.1002/maco.201005871.
Weisenburger A, Schroer C, Jianu A, et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: experiments and models[J]. Journal of Nuclear Materials, 2011, 415(3): 260–269. DOI: 10.1016/j.jnucmat.2011. 04.028http://dx.doi.org/10.1016/j.jnucmat.2011.04.028.
Weisenburger A, Heinzel A, Müller G, et al. T91 cladding tubes with and without modified FeCrAlY coatings exposed in LBE at different flow, stress and temperature conditions[J]. Journal of Nuclear Materials, 2008, 376(3): 274–281. DOI: 10.1016/j.jnucmat.2008.02.026http://dx.doi.org/10.1016/j.jnucmat.2008.02.026.
Tsisar V, Schroer C, Wedemeyer O, et al. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 ℃ to flowing Pb-Bi eutectic with 10-7 mass% dissolved oxygen[J]. Journal of Nuclear Materials, 2017, 494: 422–438. DOI: 10.1016/j.jnucmat.2017.07.031http://dx.doi.org/10.1016/j.jnucmat.2017.07.031.
杨冬梅. 小型铅冷快堆堆芯核热耦合研究及应用[D]. 上海: 上海交通大学, 2020. DOI: 10.27307/d.cnki.gsjtu.2020.000278http://dx.doi.org/10.27307/d.cnki.gsjtu.2020.000278.
YANG Dongmei. Research and application of nuclear thermal coupling in small lead-cooled fast reactor core[D]. Shanghai: Shanghai Jiao Tong University, 2020. DOI: 10.27307/d.cnki.gsjtu.2020.000278http://dx.doi.org/10.27307/d.cnki.gsjtu.2020.000278.
OECD/NEA. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies[M]. Paris: OECD Publishing, 2015. DOI: 10.1787/42dcd531-enhttp://dx.doi.org/10.1787/42dcd531-en.
Carbajo J J. Thermophysical properties of MOX and UO2 fuels including the effects of irradiation[R]. United States, Oak Ridge National Laboratoty, 2011. DOI: 10.2172/777671http://dx.doi.org/10.2172/777671.
Samsonov G V. The oxide handbook[M]. Boston, MA: Springer US, 1973. DOI: 10.1007/978-1-4615-9597-7http://dx.doi.org/10.1007/978-1-4615-9597-7.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构