浏览全部资源
扫码关注微信
1.上海交通大学 核科学与工程学院 上海 200240
2.上海交通大学 智慧能源与创新学院 上海 200240
3.上海市数值反应堆技术融合创新中心 上海 200240
沈书秋,男,1999年出生,2022年毕业于上海交通大学,现为硕士研究生,研究领域为反应堆物理数值计算
张滕飞,E-mail:zhangtengfei@sjtu.edu.cn
收稿日期:2024-11-22,
修回日期:2025-02-12,
纸质出版日期:2025-06-15
移动端阅览
沈书秋,熊进标,刘晓晶等.基于降阶模型的热管堆核热力耦合启堆瞬态模拟研究[J].核技术,2025,48(06):060013.
SHEN Shuqiu,XIONG Jinbiao,LIU Xiaojing,et al.Transient simulation of nuclear thermal-hydraulic coupling startup of heat pipe reactor based on reduced-order models[J].NUCLEAR TECHNIQUES,2025,48(06):060013.
沈书秋,熊进标,刘晓晶等.基于降阶模型的热管堆核热力耦合启堆瞬态模拟研究[J].核技术,2025,48(06):060013. DOI: 10.11889/j.0253-3219.2025.hjs.48.240471. CSTR: 32193.14.hjs.CN31-1342/TL.2025.48.240471.
SHEN Shuqiu,XIONG Jinbiao,LIU Xiaojing,et al.Transient simulation of nuclear thermal-hydraulic coupling startup of heat pipe reactor based on reduced-order models[J].NUCLEAR TECHNIQUES,2025,48(06):060013. DOI: 10.11889/j.0253-3219.2025.hjs.48.240471. CSTR: 32193.14.hjs.CN31-1342/TL.2025.48.240471.
MegaPower是一种设计用于偏远地区和军事基地等去中心化能源市场的热管冷却反应堆,其启堆过程涉及复杂的多物理场耦合计算。传统高分辨率仿真方法常面临较高的计算成本。本研究以MegaPower热管堆的启堆过程为研究对象,提出了一种基于Proper Orthogonal Decomposition-Radial Basis Function(POD-RBF)快速预测方法的核热力耦合模型,以实现复杂瞬态工况的高效模拟。通过构建MegaPower高分辨率1/6堆芯模型,并结合OpenMC、FEniCSx和POD-RBF快速预测模型对堆芯的多物理场行为进行模拟,研究了启堆阶段的功率、温度和反应性动态特性。模拟结果表明,POD-RBF方法能够准确稳定地预测堆芯功率分布,最大误差为3.04%,平均误差为0.77%;
k
eff
预测的平均误差低于50 pcm(percent mille),最大误差不超过100 pcm。在启堆功率调节阶段,功率上升速率约为每秒0.53%额定功率,最终平稳达到额定功率,功率与反应性的动态变化保持稳定。同时,POD-RBF方法显著提升了计算效率,将单个时间步计算时间从传统高分辨率模型的800 s降低至3 s,整个启堆过程模拟时间由74 d缩短至7.5 h,效率提升约99.6%。研究结果表明,基于POD-RBF方法的热管堆核热力耦合模型能够显著提高计算效率,同时在瞬态问题中具备较高的预测精度,为热管堆的设计优化与安全评估提供了参考,也为多物理场问题的快速仿真提供了新思路。
Background
2
MegaPower is a heat pipe reactor designed for decentralized energy markets
such as remote areas and military bases. Its startup process involves complex multi-physics coupling calculations. Traditional high-resolution simulations often face high computational costs.
Purpose
2
This study aims to develop and validate a fast reduced-order model based on the Proper Orthogonal Decomposition-Radial Basis Function (POD-RBF) method to efficiently simulate the startup process of the MegaPower heat pipe reactor.
Methods
2
Firstly
a high-resolution 1/6 core model was constructed to capture the essential features of MegaPower
and OpenMC was employed to model the 1/6 core model
maintaining the symmetry and main structural characteristics of the reactor geometrically. Then the neutron transport calculations were carried out by using OpenMC
and FEniCSx was used for thermal-hydraulic and stress analysis. Subsequently
the POD-RBF method was integrated into the model to reduce computational cost while maintaining accuracy. Finally
the dynamic behavior of power
temperature
and reactivity during the startup process was analyzed and compared against high-resolution simulation results.
Results
2
The simulation results indicate that the POD-RBF method achieves accurate predictions with an average power distribution error of 0.77% and a maximum error of 3.04%
and the entire startup process simulation time is reduced from 74 d to just 7.5 h
achieving an efficiency improvement of approximately 99.6%. Reactivity prediction results show that an average error below 50 pcm and a maximum error not exceeding 100 pcm are achieved. The power ramp rate during the adjustment phase reaches approximately 0.53% FP/s
with the reactor achieving nominal power smoothly and maintaining stable power and reactivity dynamics. Furthermore
the POD-RBF method significantly enhances computational efficiency
reducing the time per time step from 800 s to 3 s.
Conclusions
2
The results of this study verify the efficiency and accuracy of the POD-RBF method for simulating transient multi-physics coupling problems
providing reliable computational support for the design and safety assessment of heat pipe reactors and offers a new methodology for addressing complex multi-physics problems efficiently.
余红星 , 马誉高 , 张卓华 , 等 . 热管冷却反应堆的兴起和发展 [J ] . 核动力工程 , 2019 , 40 ( 4 ): 1 – 8 . DOI: 10.13832/j.jnpe.2019.04.0001 http://dx.doi.org/10.13832/j.jnpe.2019.04.0001 .
YU Hongxing , MA Yugao , ZHANG Zhuohua , et al . Initiation and development of heat pipe cooled reactor [J ] . Nuclear Power Engineering , 2019 , 40 ( 4 ): 1 – 8 . DOI: 10.13832/j.jnpe.2019.04.0001 http://dx.doi.org/10.13832/j.jnpe.2019.04.0001 .
Yan B H , Wang C , Li L G . The technology of micro heat pipe cooled reactor: a review [J ] . Annals of Nuclear Energy , 2020 , 135 : 106948 . DOI: 10.1016/j.anucene. 2019.106948 http://dx.doi.org/10.1016/j.anucene.2019.106948 .
Guo H , Feng K Y , Gu H Y , et al . Neutronic modeling of megawatt-class heat pipe reactors [J ] . Annals of Nuclear Energy , 2021 , 154 : 108140 . DOI: 10.1016/j.anucene. 2021.108140 http://dx.doi.org/10.1016/j.anucene.2021.108140 .
Mcclure P , Poston D , Dasari V , et al . Design of megawatt power level heat pipe reactors: LA-UR—15-28840, 1226133 [R ] . 2015 : LA-UR—15-28840 , 1226133. 10.2172/1226133 http://dx.doi.org/10.2172/1226133
Matthews C , Laboure V , DeHart M , et al . Coupled multiphysics simulations of heat pipe microreactors using DireWolf [J ] . Nuclear Technology , 2021 , 207 ( 7 ): 1142 – 1162 . DOI: 10.1080/00295450.2021.1906474 http://dx.doi.org/10.1080/00295450.2021.1906474 .
欧阳琨 , 许巍 , 刘晓晶 , 等 . 腐蚀对微结构金属试样表面沸腾换热特性的影响研究 [J ] . 核技术 , 2023 , 46 ( 6 ): 060606 . DOI: 10.11889/j.0253-3219.2023.hjs.46.060606 http://dx.doi.org/10.11889/j.0253-3219.2023.hjs.46.060606 .
OUYANG Kun , XU Wei , LIU Xiaojing , et al . Effect of corrosion on boiling heat transfer characteristics of metal specimens with micro-structure surface [J ] . Nuclear Techniques , 2023 , 46 ( 6 ): 060606 . DOI: 10.11889/j.0253-3219.2023.hjs.46.060606 http://dx.doi.org/10.11889/j.0253-3219.2023.hjs.46.060606 .
刘传栋 , 许巍 , 何辉 , 等 . 气隙对燃料板矩形通道鼓泡工况流动传热行为的影响研究 [J ] . 核技术 , 2024 , 47 ( 9 ): 090606 . DOI: 10.11889/j.0253-3219.2024.hjs.47.090606 http://dx.doi.org/10.11889/j.0253-3219.2024.hjs.47.090606 .
LIU Chuandong , XU Wei , HE Hui , et al . Effect of air gap on the flow and heat transfer behavior in rectangular channel of fuel plate during bubbling conditions [J ] . Nuclear Techniques , 2024 , 47 ( 9 ): 090606 . DOI: 10.11889/j.0253-3219.2024.hjs.47.090606 http://dx.doi.org/10.11889/j.0253-3219.2024.hjs.47.090606 .
李卫 , 刘晓晶 , 柴翔 , 等 . 基于有限体积法的中子扩散和输运算法开发 [J ] . 核技术 , 2025 , 48 ( 1 ): 010603 . DOI: 10.11889/j.0253-3219.2025.hjs.48.240037. CSTR: 32193.14.hjs.CN31-1342/TL.2025.48.240037 http://dx.doi.org/10.11889/j.0253-3219.2025.hjs.48.240037.CSTR:32193.14.hjs.CN31-1342/TL.2025.48.240037 .
LI Wei , LIU Xiaojing , CHAI Xiang , et al . Development of neutron diffusion and transport algorithms based on finite volume method [J ] . Nuclear Techniques , 2025 , 48 ( 1 ): 010603 . DOI: 10.11889/j.0253-3219.2025.hjs.48.240037. CSTR: 32193.14.hjs.CN31-1342/TL.2025.48.240037 http://dx.doi.org/10.11889/j.0253-3219.2025.hjs.48.240037.CSTR:32193.14.hjs.CN31-1342/TL.2025.48.240037 .
Ma Y G , Liu M Y , Xie B H , et al . Neutronic and thermal-mechanical coupling analyses in a solid-state reactor using Monte Carlo and finite element methods [J ] . Annals of Nuclear Energy , 2021 , 151 : 107923 . DOI: 10.1016/j.anucene.2020.107923 http://dx.doi.org/10.1016/j.anucene.2020.107923 .
Im J , Jeong M J , Choi N , et al . Multiphysics analysis system for heat pipe–cooled micro reactors employing PRAGMA-OpenFOAM-ANLHTP [J ] . Nuclear Science and Engineering , 2023 , 197 ( 8 ): 1743 – 1757 . DOI: 10. 1080/00295639.2022.2143209 http://dx.doi.org/10.1080/00295639.2022.2143209 .
Xiao W , Li X Y , Li P J , et al . High-fidelity multi-physics coupling study on advanced heat pipe reactor [J ] . Computer Physics Communications , 2022 , 270 : 108152 . DOI: 10.1016/j.cpc.2021.108152 http://dx.doi.org/10.1016/j.cpc.2021.108152 .
杨鸣睿 , 孙启政 , 罗池旭 , 等 . 基于非结构网格输运模型的核-热耦合程序的开发与验证 [J ] . 核技术 , 2023 , 46 ( 3 ): 030601 . DOI: 10.11889/j.0253-3219.2023.hjs.46.030601 http://dx.doi.org/10.11889/j.0253-3219.2023.hjs.46.030601 .
YANG Mingrui , SUN Qizheng , LUO Chixu , et al . Development and verification of a neutronics-thermal hydraulics coupling code with unstructured meshes neutron transport model [J ] . Nuclear Techniques , 2023 , 46 ( 3 ): 030601 . DOI: 10.11889/j.0253-3219.2023.hjs.46.030601 http://dx.doi.org/10.11889/j.0253-3219.2023.hjs.46.030601 .
潘俊杰 , 强胜龙 , 宫兆虎 , 等 . 反应堆多物理耦合框架的研发及验证 [J ] . 核动力工程 , 2024 , 45 ( S2 ): 35 – 41 . DOI: 10.13832/j.jnpe.2024.S2.0035 http://dx.doi.org/10.13832/j.jnpe.2024.S2.0035 .
PAN Junjie , QIANG Shenglong , GONG Zhaohu , et al . Development and validation of multi-physics coupling framework for reactors [J ] . Nuclear Power Engineering , 2024 , 45 ( S2 ): 35 – 41 . DOI: 10.13832/j.jnpe.2024.S2. 0035 http://dx.doi.org/10.13832/j.jnpe.2024.S2.0035 .
Wang J C , Wang Q , Ding M . Review on neutronic/thermal-hydraulic coupling simulation methods for nuclear reactor analysis [J ] . Annals of Nuclear Energy , 2020 , 137 : 107165 . DOI: 10.1016/j.anucene.2019.107165 http://dx.doi.org/10.1016/j.anucene.2019.107165 .
Chen E H , Zhang H M , Yuan Y D . POD-based reduced-order modeling study for thermal analysis of gas-cooled microreactor core [J ] . Frontiers in Energy Research , 2023 , 11 : 1155294 . DOI: 10.3389/fenrg.2023.1155294 http://dx.doi.org/10.3389/fenrg.2023.1155294 .
Sartori A , Cammi A , Luzzi L , et al . A multi-physics reduced order model for the analysis of Lead Fast Reactor single channel [J ] . Annals of Nuclear Energy , 2016 , 87 : 198 – 208 . DOI: 10.1016/j.anucene.2015.09.002 http://dx.doi.org/10.1016/j.anucene.2015.09.002 .
季旭 , 柴翔 , 张乐福 , 等 . 基于氧化腐蚀特性的铅铋堆单棒核-热-材耦合研究 [J ] . 核技术 , 2024 , 47 ( 11 ): 110604 . DOI: 10.11889/j.0253-3219.2024.hjs.47.110604 http://dx.doi.org/10.11889/j.0253-3219.2024.hjs.47.110604 .
JI Xu , CHAI Xiang , ZHANG Lefu , et al . Neutronics-thermal-hydraulics-material coupling study of lead-bismuth cooled reactor single rod based on oxidative corrosion characteristics [J ] . Nuclear Techniques , 2024 , 47 ( 11 ): 110604 . DOI: 10.11889/j.0253-3219.2024.hjs.47.110604 http://dx.doi.org/10.11889/j.0253-3219.2024.hjs.47.110604 .
Elzohery R , Roberts J . Exploring transient, neutronic, reduced-order models using dmd/pod-Galerkin and data-driven dmd [J ] . EPJ Web of Conferences , 2021 , 247 : 15019 . DOI: 10.1051/epjconf/202124715019 http://dx.doi.org/10.1051/epjconf/202124715019 .
Vergari L , Cammi A , Lorenzi S . Reduced order modeling for coupled thermal-hydraulics and reactor physics problems [J ] . Progress in Nuclear Energy , 2021 , 140 : 103899 . DOI: 10.1016/j.pnucene.2021.103899 http://dx.doi.org/10.1016/j.pnucene.2021.103899 .
Romano P K , Horelik N E , Herman B R , et al . OpenMC: a state-of-the-art Monte Carlo code for research and development [J ] . Annals of Nuclear Energy , 2015 , 82 : 90 – 97 . DOI: 10.1016/j.anucene.2014.07.048 http://dx.doi.org/10.1016/j.anucene.2014.07.048 .
Walker E , Skutnik S , Wieselquist W , et al . SCALE modeling of the fast spectrum heat pipe reactor: ORNL/TM-2021/2021 [R ] . Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) , 2022 .
Brooks H , Davis A . Scalable multi-physics for fusion reactors with AURORA [J ] . Plasma Physics and Controlled Fusion , 2023 , 65 ( 2 ): 024002 . DOI: 10.1088/1361-6587/aca998 http://dx.doi.org/10.1088/1361-6587/aca998 .
Zhang J D , Li T , Shen Z R , et al . Investigations of multiphysics models on a megawatt-level heat pipe nuclear reactor based on high-resolution approaches [J ] . Nuclear Science and Engineering , 2024 , 198 ( 5 ): 1097 – 1121 . DOI: 10.1080/00295639.2023.2227838 http://dx.doi.org/10.1080/00295639.2023.2227838 .
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构