基于组合神经网络模型的快堆堆芯瞬态热工水力参数预测方法研究
对于反应堆热工水力参数的预测,现有的研究多使用单一神经网络的预测方法,但在噪声较大的情况下,单一神经网络不能很好地剔除噪声的影响。本文使用基于经验模态分解法(Empirical Mode Decomposition,EMD)与奇异谱分析法(Singular Spectrum Analysis,SSA)结合自适应径向基神经网络(Radial Basis Function Neural Network,RBF)的组合模型提高堆芯热工参数瞬态预测的精度。采用1/2中国实验快堆(China Experimental Fast Reactor,CEFR)为研究对象,使用快堆子通道程序SUBCHANFLOW生成瞬态堆芯热工水力参数的时间序列,并利用组合神经网络模型对堆芯质量流量和包壳表面最高温度时间序列进行单步预测和连续预测。结果表明:相对于单一RBF神经网络,EMD-RBF组合神经网络和EMD-SSA-RBF组合神经网络对质量流量的单步预测误差分别下降41.2%和86.7%,对包壳表面最高温度的单步预测误差分别下降44.7%和60.5%,明显地降低了连续预测误差,且计算时间较短。该方法相比于深度神经网络有一定的优势,对于提高反应堆在工程应用中的安全性有一定的参考价值。
> 核能科学与工程